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ABSTRACT
Microbial communities play pivotal roles in ocean biogeochemistry, yet linking their composition to ecosystem functions re-
mains a significant challenge. In this study, we demonstrate the predictive power of bacterioplankton taxonomic composition in 
explaining oxygen consumption during dissolved organic matter (DOM) degradation. Using 4 years of experimental data, we in-
tegrated ‘omics with statistical modeling, applying feature selection and dimensionality reduction to develop high-performance 
linear regression models with strong predictive accuracy. Our framework also identifies key microbial groups driving oxygen 
consumption, including taxa known for their differential capabilities in DOM processing and recently shown to exhibit distinct 
respiration rates. Flavobacteriales emerge as central contributors to oxygen consumption, underscoring their ecological impor-
tance in nutrient-rich, highly productive coastal systems often referred to as ‘green seas’. Their consistent dominance across 
varying oxygen consumption categories highlights their pivotal role in sustaining ecosystem functions in these environments. 
Beyond oxygen consumption, this framework provides a versatile tool for investigating microbially driven biogeochemical pro-
cesses. By linking community composition with ecosystem functions, our study advances predictive microbial ecology. These 
findings deepen our understanding of microbial contributions to the ocean's carbon and oxygen cycles, improving our ability to 
anticipate their responses to environmental change.
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1   |   Introduction

Massive sequencing technologies and ‘omics’ techniques have 
unveiled the vast taxonomic and functional diversity of marine 
microbial communities, laying the groundwork for developing 
predictive models of microbially driven processes. However, 
integrating this complexity into robust models remains a press-
ing challenge amid rapid global environmental change (Li 
et al. 2025).

The microbial degradation of dissolved organic matter (DOM) 
is a cornerstone of marine biogeochemistry, fueling carbon 
turnover and driving oxygen consumption across marine eco-
systems (Kujawinski  2011). Heterotrophic bacterioplankton 
transform DOM through biomass incorporation, remineralisa-
tion to CO2 and the production of refractory compounds (Jiao 
et  al.  2010), regulating carbon and oxygen dynamics in the 
ocean (Robinson 2019). Coastal environments, in particular, act 
as biogeochemical hotspots, where microbial-mediated DOM 
processing plays a crucial role in shaping ecosystem function 
(Hedges et al. 1997; Breitburg et al. 2018).

Understanding the microbial mechanisms underpinning these 
processes requires integrating information on community com-
position with direct measurements of biogeochemical rates. 
Historically, microbial community profiling and physiological 
rate measurements have been applied independently, yet their 
integration is now recognised as essential for improving predic-
tive models of ecosystem function (Strzepek et al. 2022). Recent 
regression-based approaches have successfully identified micro-
bial functional groups in relation to steady-state variables (e.g., 
nitrate concentration in the TARA dataset) (Shan et al. 2023) or 
theoretical simulations of resource utilisation (Zhao et al. 2024), 
highlighting the robustness of relatively straightforward statisti-
cal frameworks. However, their direct application to predicting 
microbially driven processes from empirical data remains largely 
unexplored, particularly in marine biogeochemistry.

Here, we present a quantitative framework to predict oxy-
gen consumption during DOM degradation from microbial 
community composition and to identify the bacterioplankton 
taxa driving this process, integrating microbial taxonomic 
and functional profiling, environmental characterisation 
and statistical modelling This approach draws on 50 experi-
ments conducted over 4 years at the South Atlantic Microbial 
Observatory (SAMO), located in a region recognised as a 
global warming hotspot.

2   |   Methods

2.1   |   Sampling

Sampling was conducted at the South Atlantic Microbial 
Observatory (SAMO, 34° 42′ 43.36″ S, 54° 14′ 08.64″ W), a 
coastal site within a national protected area and part of in-
ternational initiatives such as Ocean Sampling Day and the 
AMOLat network (Kopf et  al.  2015; Fermani et  al.  2024). 
Subsurface water samples were collected using acid-washed 
carboys during 50 sampling campaigns from March 2018 to 
October 2021.

2.2   |   Environmental Characterisation

Physicochemical parameters (conductivity, turbidity, tem-
perature, dissolved oxygen, salinity, total dissolved solids, 
density and pH) were measured in  situ with a Horiba mul-
tiparameter sensor. Chlorophyll and phycocyanin fluores-
cence were assessed with a Turner fluorometer, and light 
penetration with a Secchi disc. Water samples were frozen 
at −20°C for nutrient analysis following standard colorimet-
ric protocols (APHA  1995) to quantify silica (Müllin and 
Riley  1955), ammonium (Koroleff  1970), nitrate (Mackereth 
et  al., Mackereth et  al.  1978), nitrite (Bendschneider and 
Robinson  1952), phosphate (Murphy and Riley  1962), total 
nitrogen (Valderrama  1981 and then Mackereth et  al.  1978) 
and total phosphorus (Valderrama  1981, and then Murphy 
and Riley  1962) with a UV–Vis Genesys 150 spectropho-
tometer (Thermo Fisher Scientific). Chlorophyll-a was de-
termined spectrophotometrically after acetone extraction 
(Lorenzen 1967; Parsons et al. 1984).

2.3   |   Dissolved Organic Matter Quality

Samples for DOM characterisation were filtered through pre-
combusted GF/F filters (0.7 μm, 450°C, 4 h) and stored fro-
zen. Absorbance spectra (240–800 nm) were measured using 
a Perkin Elmer Lambda 35 spectrophotometer, with a 1 cm 
quartz cuvette and Milli-Q water blank; values were blank-
corrected and converted to Napierian absorption coefficients 
(Helms et al. 2008).

Fluorescence properties were analysed using a Fluoromax 4 
(Horiba) spectrofluorometer, acquiring excitation-emission 
matrices (EEMs) for emission wavelengths from 280 to 600 nm 
(2 nm steps) and excitation wavelengths from 240 to 450 nm 
(5 nm steps). The StaRdom R package (Pucher et al. 2019) was 
employed for parallel factor analysis (PARAFAC) (Murphy 
et  al.  2013), with spectra corrected for inner-filter effects and 
with instrument-specific correction factors. Components were 
standardised to Raman units (nm−1) and validated via split-half 
analysis, random initialization and examination of the model's 
residuals (Murphy et al. 2013). Identified components were com-
pared against the OpenFluor database (Murphy et al. 2014).

DOM composition was further analysed via high-performance 
liquid chromatography coupled with fluorescence detection 
(HPLC-FLD) (Li et al. 2013) and UV detection, following acid-
ification (pH 2, HCl), solid-phase extraction (Oasis HLB car-
tridges) and methanol elution (Dittmar et al. 2008).

Chromatographic separations were conducted on a Thermo 
Scientific Hypersil Gold C18 column using reversed-phase 
chromatography (RPC) in a Thermo Scientific Ultimate 3000 
System equipped with a sequential Diode Array Detector (DAD) 
3000DAD and a 3400RS Fluorescence Detector (FLD). The 
mobile phase consisted of (A) 0.1% formic acid in water and 
(B) 0.1% formic acid in LC-grade acetonitrile. The gradient in-
creased from 10% B to 25% B at 10 min, to 95% B at 18 min, held 
for 2 min; the flow rate was 1 mL/min, injection volume 10 μL. 
Hydrophilic and hydrophobic fractions were classified based on 
retention time (Li et al. 2013).
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FLD operated in emission scan mode with fast scan speed 
(λ_exc: 240 nm, λ_em: 290–600 nm) and DAD scanned 220–
800 nm. Peaks identified by FLD within the emission maxima 
of PARAFAC components were quantified. The DAD targeted 
UV absorption peaks at 254, 273, 280 and 290 nm—indicative 
of aromatic compounds, humic substances, lignin derivatives 
(254 nm), polyaromatic compounds, polyphenols and amino 
acids or protein-bound aromatic residues (273 and 280 nm) and 
oxidised aromatic compounds and extended conjugation sys-
tems (290 nm) (Weishaar et al. 2003; Thomas and Burgess 2007). 
Instrument control and data processing were performed using 
Chromeleon v.7.2.9 (Thermo Scientific). Full DOM characterisa-
tion results are presented in Data S1.

2.4   |   Bacterioplankton Taxonomic and Functional 
Composition

Water samples were sequentially filtered through 25 μm and 
0.2 μm cellulose filters; the latter, containing the microbial bio-
mass were stored at −80°C until DNA extraction, using a man-
ual protocol (Alonso et  al.  2010). Bacterioplankton taxonomic 
composition was determined by amplifying a fragment of the 
V4-V5 hypervariable regions of the 16S rRNA gene with prim-
ers 515F-Y (5′-GTG YCA GCM GCC GCG GTA A-3′) and 926R 
(5′-CCG YCA ATT YM TTT RAG TTT-3′) (Parada et al. 2016), 
sequenced on an Illumina MiSeq at the Integrative Genomics 
Core (City of Hope, US).

Amplicon sequences were pre-processed using bbduk (http://​
seqan​swers.​com/​forums/​showt​hread.​php?​t=​42776​) and cut-
adapt (https://​cutad​apt.​readt​hedocs.​io/​en/​stable). The DADA2 R 
package (Callahan et al. 2016) was then used for quality filtering 
and ASV inference, following these steps: (1) Trimming R1 and 
R2 reads to 220 and 175 bp, respectively and removing reads with 
> 2 expected errors; (2) Modeling error rates; (3) Dereplicating 
reads; (4) inferring ASVs using the dada function with the pool 
option; (5) Merging paired-end reads with a minimum overlap 
of 12 nucleotides; and (6) Removing chimera sequences. ASVs 
were taxonomically annotated using the Naive Bayes Classifier 
in DADA2, with SILVAv138.1 NR 99 as the reference database 
(https://​www.​arb-​silva.​de) (Quast et  al.  2013). Pre-processing 
tasks were automated through a custom pipeline available at 
https://​github.​com/​perei​ramemo/​ampli​con_​pipel​ines.

For functional characterisation, metagenomic DNA was se-
quenced on the Illumina NovaSeq 6000 SP FC platform at LGC 
Genomics GmbH (Berlin, Germany) and the Genomics and 
Cell Characterisation Core Facility (GC3F) at the University of 
Oregon (Eugene, US). Raw metagenomic sequences were pre-
processed by merging paired-end reads using Pear (https://​cme.​
h-​its.​org/​exeli​xis/​web/​softw​are/​pear), with a minimum over-
lap of 12, trimming low-quality regions (Q < 20) and discard-
ing reads shorter than 50 bp with bbduk, The complete custom 
pipeline is available at https://​github.​com/​perei​ramemo/​metag​
enomic_​pipel​ines.

Functional annotation was performed by predicting open read-
ing frames (ORFs) with FragGeneScan (https://​omics.​infor​
matics.​india​na.​edu/​FragG​eneScan) and comparing trans-
lated sequences to the dbCAN database of HMM profiles for 

carbohydrate-active enzymes (CAZymes) (Drula et  al.  2022) 
using hmmsearch (Eddy 2011).

To evaluate the commensurability of amplicon- and metagenome-
derived taxonomic profiles, we compared community composi-
tion across multiple taxonomic ranks after applying harmonised 
filtering criteria and sequencing depth normalisation. A detailed 
description of the methodology, together with results on micro-
bial taxonomic and functional composition—including ampli-
con versus metagenome comparisons—is provided in Data S2.

2.5   |   DOM Degradation Experiments

Fifty DOM biodegradation experiments were conducted be-
tween March 2018 and October 2021. Water samples were pre-
filtered through 1.6 μm GF filters to reduce eukaryotic biomass, 
then incubated in 1 L airtight glass bottles, sealed with plastic 
film and caps. Incubations were performed in triplicate, along 
with a killed control, for ~1 week in a dark environmental cham-
ber at in  situ temperature recorded at the time of sampling 
(ranging from 11.1°C to 27.8°C).

Oxygen concentrations were recorded every 15 min using non-
invasive optical sensors attached to the inner bottle walls, 
connected to a 4-channel controller/transmitter (OXY-mini, 
PreSens Precision Sensing GmbH, Regensburg, Germany). 
Oxygen consumption curves were analyzed to determine a 
standardised comparison time point across experiments, se-
lecting 120 h as the reference when consumption generally 
stabilised.

Oxygen consumption in mg served as the response variable in re-
gression models and the percentage of initial oxygen consumed 
was used in WARD hierarchical clustering (Euclidean distance) 
to classify experiments by consumption patterns. These clusters 
were subsequently used to identify bacterial indicators of differ-
ent consumption levels.

2.6   |   Variable Selection for Modelling

To identify the most informative components of the microbial 
community, we applied a sequential strategy involving feature 
selection followed by dimensionality reduction through ordina-
tion analysis (Figure 1).

First, ASVs with a minimum abundance of 0.005% were re-
tained (ASV0.005 dataset). Sparse partial least squares regression 
(sPLSR) analysis (Lê Cao et al. 2008), implemented in the mix-
Omics R package (Rohart et al. 2017) was then used to identify 
ASVs most associated with oxygen consumption (ASVsel data-
set), which were aggregated at the genus level (GENsel dataset). 
A similar sPLSR approach was applied to CAZyme annotations 
to define the CAZsel dataset.

Dimensionality reduction was performed using PCA, PCoA and 
NMDS with the vegan R package. (Oksanen et  al.  2012). ASV 
and CAZ datasets were Hellinger-transformed prior to analysis 
(Legendre and Gallagher 2001); Bray-Curtis distances were used 
for PCoA and NMDS. Environmental variables (ENV dataset, 
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n = 52) were reduced to 30 after filtering for multicollinearity 
(correlation analysis, VIF) and PCA was run on the standard-
ized matrix. Axes for modeling were selected to explain ≥ 80% of 
variance (max. 15, axes) for PCA and PCoA, whereas for NMDS, 
the number of axes was determined by scree plots, using a stress 
threshold of 0.05 (Tables S1, S4).

2.7   |   Data Exploration and Statistical Modelling

Data exploration and statistical modelling followed established 
guidelines (Zuur et  al.  2010; Zuur and Ieno  2016) including 

identifying outliers, examining the distribution of the response 
variable, assessing collinearity and interactions and testing for 
temporal dependence.

Oxygen consumption was log-transformed to approximate nor-
mality. Linear Regression Models (LMs) were built separately 
for ASVsel, GENsel, CAZsel and ENV datasets, using retained or-
dination axes as predictors.

Backward selection was applied using ANOVA tests, retain-
ing only statistically significant variables. Model selection 
was refined based on the Akaike Information Criterion (AIC) 

FIGURE 1    |    Workflow for variable selection, reduction and identification of key microbial groups related to oxygen consumption. (A) Generation 
of an ASV table from amplicon sequences using DADA2 with the Silva database as a reference for taxonomic annotation. The table is filtered to 
retain the most abundant ASVs. (B) Selection of the most relevant ASVs associated with oxygen consumption through sparse Partial Least Squares 
Regression (sPLSR) implemented in MixOmics. Principal Coordinate Analysis (PCoA) is then performed, and the extracted PCoA axes are used 
as predictive variables in linear models. (C) Identification of indicator taxa from the most abundant ASVs matrix using Indicator Value Analysis 
(IndVal) to differentiate categories of oxygen consumption. From the sPLSR-selected ASVs matrix, Ensemble Quotient Optimization (EQO) is ap-
plied to identify key taxa associated with continuous oxygen consumption values.
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(Akaike  1973) and Bayesian Information Criterion (BIC) 
(Schwarz  1978). Diagnostic plots were visually inspected to 
identify potential influential points and to assess homogeneity 
and normality of residuals—supplemented by Shapiro-Wilk and 
Breusch–Pagan tests. Model evaluation was carried out using the 
R packages performance (Lüdecke, Ben-Shachar, et  al.  2021), 
see (Lüdecke, Patil, et al. 2021), patchwork (Pedersen 2024a) and 
car (Fox and Weisberg 2019).

Since oxygen consumption was well explained by LMs within 
each dataset, Lasso regression was applied to integrate them 
and enhance predictive accuracy. While ordination axes are 
orthogonal within datasets, combining them may introduce 
multicollinearity by capturing overlapping gradients. Lasso 
mitigates this through coefficient regularisation and sparsity 
constraints, reducing overfitting in high-dimensional data 
(Tibshirani 1996).

Predictive accuracy of LM and Lasso models was assessed using 
Leave-One-Out Cross-Validation (LOOCV), comparing root 
mean square error (RMSE) and Pearson correlations between 
observed and predicted values.

2.8   |   Identification of Key Taxa

To identify microbial taxa most associated with oxygen con-
sumption, we applied the Ensemble Quotient Optimization 
(EQO) approach for functional group discovery (Shan 
et al. 2023) using the mEQO R package. EQO was performed at 
the genus level, as originally implemented (Shan et al. 2023), 
to optimise computational time. From the Gensel dataset, en-
sembles of genera maximising correlation with oxygen con-
sumption were identified using the EQ_optim function with a 
genetic algorithm, testing from 2 to 24 genera (in steps of 2) and 
selecting the optimal model based on R2 improvement. Model 
robustness was assessed by cross-validation (100 iterations of 
80:20 train-test splits) and cumulative R2 of individual and 
paired genera was used to determine their relative importance. 
Analyses were conducted using mEQO (Shan et al. 2023), GA 
(Scrucca  2013) and AICcmodavg (Mazerolle  2023). Network 
visualisation was performed with ggraph (Pedersen  2024b) 
and tidygraph (Pedersen 2024c).

Indicator Species Analysis (IndVal) (Dufrene and Legendre 1997) 
was conducted to identify taxa indicative of each oxygen-
consumption category following Alonso et  al.  (2022) with the 
indicspecies R package (De Cáceres and Legendre 2009). From 
the ASV0.005 dataset, candidate ASVs were identified for each 
oxygen-consumption category by selecting those with a fre-
quency threshold value (Bt) of at least 0.5 (i.e., present in 50% 
of samples within the target category). The indicators function 
was used to evaluate the predictive value of combinations of up 
to three ASVs. From which optimal indicators were selected by 
maximising their positive predictive value (component A).

The same analysis was repeated using genus-level abundances 
derived from the ASV0.005 dataset (Gen0.005 dataset). The predic-
tive accuracy of all selected indicators was validated using the 
predict function, with LOOCV, as recently implemented in the 
indicspecies package (Alonso et al. 2022).

All visualisations were produced using the ggplot2 R package 
(Wickham 2016), for graphs with a wide colour range, the Viridis 
palette was chosen for accessibility (Garnier et  al.  2024). All 
analyses were conducted in R version 4.2.2 Patched and RStudio 
version 2023.09.1 + 494 (R Development Core Team 2011).

3   |   Results

3.1   |   Oxygen Consumption

Oxygen consumption during the experiments from 0.82 to 
11.01 mg (median: 2.14 mg). WARD hierarchical clustering iden-
tified four distinct experiment clusters (Figure 2A) that signifi-
cantly differed in oxygen consumption levels (Welch's ANOVA 
test, F = 58.548, p = 0.0006; Figure 2B).

3.2   |   Feature Selection and Dimensionality 
Reduction

The sPLSR analysis on the ASV0.005 dataset identified the opti-
mal number of components and selected ASVs that maximised 
the co-variance between bacterioplankton composition and ox-
ygen consumption (Figure  3A). From these results, 298 ASVs 
from the first two components were retained as the ASVsel data-
set. Similarly, for CAZymes, 450 out of 543 CAZymes were se-
lected by the first sPLSR component, defining the CAZsel dataset 
(Figure 3B).

Bray-Curtis-based Principal Coordinates Analysis (PCoA) or-
dinations of ASV and CAZ datasets (Figure  4) show that the 
ASVsel dataset achieves a slightly better sample separation along 
PC1 compared to ASV0.005 (Figure  4A,B). A similar improve-
ment is observed between CAZall and CAZsel (Figure  4C,D). 
These enhancements align with the higher variance explained 
by the selected datasets, although a clear separation of oxygen 
consumption categories is not evident in either case.

A summary of a comparison of the linear regression models ob-
tained for the ASV0.005 and CAZall datasets with different ordi-
nation techniques is shown in Table S2. Model performance was 
assessed using Akaike Information Criterion (AIC), Bayesian 
Information Criterion (BIC) and adjusted R2. PCoA-based 
models generally outperformed PCA-based ones, while NMDS-
based models performed poorly for ASVs.

Given these results, further linear regression models were con-
structed using PCoA ordination axes for taxonomic (ASV and 
GEN) and functional (CAZ) datasets. Environmental variable 
models were based on PCA axes from the standardised ENV 
matrix, as PCA is well-suited for continuous positive variables, 
and standardisation ensures all variables contribute equally, re-
gardless of their original units or magnitude of variation.

3.3   |   Linear Regression Model Performance

A summary of the linear regression models comparison for 
the ASV, GENsel, CAZ and ENV datasets is shown in Table 1. 
Feature selection notably improved model performance, with 
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FIGURE 2    |    Oxygen consumption during DOM degradation experiments. (A) Ward clustering of the percentage of initial oxygen consumed at 
120 h of incubation, using Euclidean distance. (B) Oxygen consumption grouped by Ward clusters. The boxplots represent the distribution of oxygen 
consumption for each predefined Ward group, identified in the clustering analysis. Each box shows the interquartile range (IQR), with the horizontal 
line representing the median value. Whiskers extend to 1.5 times the IQR, and points outside this range indicate outliers. (C) Oxygen consumption 
(millimoles per litre per hour) measured at the 24-h mark for each experiment.
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ASVsel- and CAZsel-based models showing higher adjusted R2 
values and lower AIC/BIC scores than ASV0.005 and CAZall 
models, respectively. Within taxonomy-based datasets, ASVsel 
outperformed GENsel in explanatory power.

When modelled independently, bacterioplankton taxonomy ex-
plained 68% of the variance in oxygen consumption during DOM 
degradation experiments, CAZymes 36% and environmental 
variables 11%, reflecting the relative explanatory power of each 
dataset. Detailed model results are provided in Data S3.

Since oxygen consumption was effectively modeled using linear 
regressions within each dataset, Lasso regression was applied 
to integrate them and potentially enhance predictive accuracy.

In the first analysis (lassoaxes), we used ordination axes ex-
plaining ≥ 80% of variance in ASVsel, CAZsel and ENV datasets 
(38 axes total), retaining 21 in the final model (Table S3A). In 
the second analysis (lassoraw), Lasso was applied directly to raw 
data (298 ASVs, 450 CAZymes, 30 environmental variables), re-
taining 43 variables (Table S3B).

Predictive performance was evaluated using leave-one-out 
cross-validation (LOOCV), comparing root mean square error 
(RMSE) and Pearson correlations between observed and pre-
dicted values for both Lasso models and the linear regression 
models based on ASVsel and GENsel datasets.

The lassoaxes model outperformed lassoraw, confirming 
that dimensionality reduction improves predictive accuracy 
while maintaining model stability. Notably, ASV-based and 
GEN-based linear models performed comparably to lassoaxes, 
underscoring the high predictive power of bacterioplankton tax-
onomic composition alone (Figure 5).

3.4   |   Identification of Key Groups

Ensemble Quotient Optimization (EQO) on the GENsel dataset 
identified combinations of up to 18 genera as optimal for max-
imising correlation with oxygen consumption, beyond which 
R2 plateaued (Figure S1). The importance of individual gen-
era and their pairwise associations is illustrated in an aggre-
gation network, with node size and edge width representing 
their relative significance (Figure 6). Flavobacteriales was the 
most highly represented order, followed by Rhodobacterales. 
Together, these groups accounted for ca. 30% of the genera 
identified by EQO, while the contribution of each of the re-
maining orders did not exceed 5%. Indicator Species Analysis 
(IndVal) applied to the ASV0.005 dataset identified taxa indica-
tive of each of the oxygen consumption categories—W1 (low), 
W2 (moderate), W3 (high) and W4 (very high)—as previously 
defined by Ward clustering. Many ASVs selected as indicators 
were also highlighted by EQO (bold in Table 2A). A genus-level 
IndVal analysis (Table 2B) similarly retrieved several genera 

FIGURE 3    |    Feature selection using sparse Partial Least Squares Regression (sPLSR). The number of variables (features) used to construct each 
latent component was determined using the tune.spls function from the mixOmics R package. Components were tuned iteratively, selecting the 
optimal number of variables (keepX) based on the lowest Mean Square Error (MSE). The error rate was averaged across cross-validated folds and 
repeats, with standard deviations represented by error bars. The bubbles indicate the optimal keepX values that achieved the lowest classification 
error rates for each component, determined using a one-sided t-test. Panel A show the Results for the ASV dataset, and Panel B for the CAZ dataset.
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8 of 17 Environmental Microbiology, 2025

FIGURE 4    |    Principal Coordinate Analysis (PCoA) ordination plots.
The PCoA plots represent the dissimilarity between samples, calculated using Bray-Curtis distances on Hellinger-transformed data. Panels correspond to 
different datasets: (A) ASV0.005, (B) ASVsel, (C) CAZall and (D) CAZsel. Each point represents a sample, and the distances between points reflect their 
compositional differences. The axes (PCoA1 and PCoA2) show the percentage of variance explained by the respective principal coordinates. Points 
are coloured according to oxygen consumption categories, defined via WARD clustering of oxygen consumption at 120 h of incubation (W1 = low, 
W2 = moderate, W3 = high, W4 = very high).

TABLE 1    |    Comparison of model performance metrics across independent datasets. The table summarises the number of features, components, 
and model performance metrics—Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC) and explained variance (adjusted R2)—
for the full and optimised models across six datasets: ASV0.005, ASVsel, GENsel, CAZall, CAZsel, (PCoA axes) and ENV (PCA axes) in explaining oxygen 
consumption during DOM degradation experiments.

ASV0.005 ASVsel GENsel CAZall CAZsel ENV

n features 1160 298 106 543 450 30

n components full model 14 11 10 15 14 13

n components optimised model 4 8 5 3 3 2

AIC full model 53 20 35 69 59 77

AIC optimised model 43 18 27 53 47 63

BIC full model 84 45 58 101 89 106

BIC optimised model 55 37 41 62 57 70

R2
adj full model 0.39 0.68 0.56 0.18 0.32 0.004

R2
adj optimised model 0.42 0.68 0.59 0.29 0.36 0.11
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9 of 17Environmental Microbiology, 2025

identified by EQO (bold), reinforcing their role in oxygen con-
sumption patterns. Flavobacteriales accounted for approxi-
mately 20% of the indicator taxa, followed by Rhodobacterales 
with about 10%. Other relevant orders included Cytophagales, 
Alteromonadales and Burkholderiales, each contributing up 
to 8% of the indicator taxa.

ASV-based indicators achieved perfect classification of oxygen 
consumption categories using leave-one-out cross-validation 
(LOOCV, Figure 7A), whereas genus-based indicators correctly 
classified 84% of samples, with misclassifications mainly be-
tween W2 and W3 (Figure 7B).

Correlation analysis between the ASVsel and CAZsel datasets, 
based on strong positive correlations (> 0.5) revealed a clear 
pattern of associations (Figure  S2). Flavobacteriales clearly 
dominated these associations, accounting for more than 25% 
of the correlated taxa. They were followed, at a considerable 
distance, by Rhodobacterales and Puniceispirillales, each con-
tributing around 6%–7% of the correlations. Other noteworthy 
groups, each representing approximately 4% of the associations, 
included SAR11 as well as the Gammaproteobacterial orders 
Oceanospirillales, Cellvibrionales and Burkholderiales. Notably, 
most of these ASVs belonged to the key groups identified by 
EQO and/or IndVal (Table S4).

ASVsel and CAZsel correlations revealed a distinct preva-
lence pattern: Glycoside Hydrolases (GH) were dominant, 
followed by Glycosyltransferases (GT) and Polysaccharide 
Lyases (PL). Auxiliary Activities (AA), Carbohydrate Esterases 
(CE) and Carbohydrate-Binding Modules (CBM) were less 
abundant (Table  S4). Among GH families, GH13 was most 
prevalent, followed by GH5, GH43, GH65, GH57 and GH42, 
mirroring overall dataset trends (Figure  3 in Data  S2). GH13 
and GH65 CAZymes were primarily associated with Bacteroidia 
(mainly Flavobacteriales), while GH42 correlated with 
Gammaproteobacteria. Alphaproteobacteria were overrepre-
sented in correlations with GH5 and GH57 (Table S4).

3.5   |   Environmental Influence on Microbial 
Oxygen Consumption

Although environmental variables explained only a small frac-
tion of oxygen consumption variability, analyzing their con-
tributions provides insights into the underlying drivers of this 
microbial process. Since PCA axes are derived from linear rela-
tionships, each variable's contribution can be directly quantified. 
The two retained ENV model axes—PC2 and PC11—highlight 
key factors grouped into four categories: DOM quality, water col-
umn structure, nutrients and temperature (Data S3).

FIGURE 5    |    Predictive performance of Lasso and linear models using LOOCV. Scatterplots compare observed versus predicted values for differ-
ent regression models evaluated using Leave-One-Out Cross-Validation (LOOCV):(A) Lasso model applied to raw data from the ASVsel, CAZsel and 
ENV datasets, (B) Lasso model applied to ordination axes of the ASVsel, CAZsel and ENV datasets, (C) Linear model applied to ordination axes of the 
GENsel dataset, (D) Linear model applied to ordination axes of the ASVsel dataset. The dashed line represents the 1:1 relationship between observed 
and predicted values. The Pearson correlation coefficient and Root Mean Square Error (RMSE) are reported for each model, along with the number 
of variables included.
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DOM composition-related variables, including FLD340 (protein-
like), FLD416 and FLD452 (humic-like) and UV254 (aromatic 
compounds) (Data S3), were among the strongest contributors. 
These metrics reflect DOM characteristics such as aromaticity 
and chemical composition, which influence microbial degra-
dation. Water column structure was captured by Secchi depth, 
turbidity and dissolved oxygen (DO), parameters that regulate 
light penetration, particle load and microbial interactions with 
DOM. Nutrients, including total nitrogen (NT), total phospho-
rus (PT) and nitrite (NO2), also emerged as significant drivers. 
Temperature was consistently identified as a key factor in both 
PCA axes (Data S3).

4   |   Discussion

Our framework successfully predicted oxygen consumption 
during DOM degradation, both quantitatively and qualitatively, 
demonstrating the strong link between bacterioplankton taxo-
nomic composition and microbially driven biogeochemical pro-
cesses. By integrating high-resolution community composition 
data with statistical modeling, we identified key microbial taxa 
and functional signatures driving oxygen consumption across 
diverse experimental conditions.

A major challenge in microbial ecology is extracting biologically 
meaningful patterns from high-dimensional datasets, where 
a high number of variables relative to a limited number of ob-
servations, combined with multicollinearity and a sparse data 

structure, often hinders robust statistical modelling (Lê Cao 
et  al.  2008). We addressed this by applying sparse partial least 
squares regression (sPLSR), which enabled the selection of the 
most relevant ASVs and CAZymes associated with oxygen con-
sumption, significantly improving model performance metrics. 
This feature selection step, combined with dimensionality reduc-
tion via PCoA, optimised predictive accuracy and enhanced bio-
logical interpretability.

Dimensionality reduction utilising ordination axes is a widely used 
and effective strategy to capture the most meaningful gradients in 
the data while minimising redundancy (Paliy and Shankar 2016) 
and has been effectively employed as a basis for modeling mi-
crobial processes (Domeignoz-Horta et  al.  2020). Here, PCoA 
outperformed other ordination techniques in preserving vari-
ance relevant to oxygen consumption modeling, largely due to 
the characteristics of microbial datasets. High-dimensional and 
sparse structures, common in microbial ecology, pose challenges 
for methods that operate on raw data matrices, such as PCA. The 
presence of many zeros and low-abundance features can intro-
duce instability and distort variance calculations, particularly in 
Euclidean-based approaches. PCoA overcomes this limitation 
by relying on a dissimilarity matrix, often constructed using 
ecological metrics like Bray-Curtis, which effectively deals with 
sparsity (Legendre and Legendre 1998). Additionally, PCoA (like 
PCA) generates orthogonal axes that reflect independent gradi-
ents of variation, improving interpretability and reducing multi-
collinearity—critical factors in regression-based models (James 
et  al.  2013). In contrast, NMDS, while useful for visualizing 

FIGURE 6    |    Aggregation network of genera and their pairwise associations in relation to oxygen consumption as revealed by EQO. The network 
illustrates the relative importance of individual genera (nodes) and their pairwise associations (edges) in relation to oxygen consumption. Node size 
and colour intensity indicates the importance of each genus, while edge thickness represents the importance of the association between genera.
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11 of 17Environmental Microbiology, 2025

community patterns, does not enforce orthogonality and is sen-
sitive to initial configurations, potentially leading to inconsisten-
cies across replicates. Furthermore, NMDS prioritises preserving 

rank order rather than absolute distances, limiting its suitability 
for applications requiring quantitative dimensionality reduction 
(Armstrong et al. 2022).

TABLE 2    |    Bacterioplankton indicators for each oxygen consumption category. Indicators were identified at the ASV level (A) and the genus 
level (B). Candidate ASVs or genera met the criterion of being present in at least 50% of the samples within each category. The IndVal components 
of specificity (A) and sensitivity (B) were used to assess indicator performance. The final indicators represent the best combinations of candidates 
selected among all statistically significant possibilities (p < 0.05), achieving 100% coverage of their respective categories. Taxa highlighted in bold 
were also retrieved as key for oxygen consumption by the EQO analysis.

A. Indicators of the different consumption levels based on ASVs

IndVal

Group Candidate ASVs A B Indicator ASVs and their taxonomic affiliation

1 320 1 0.64 ASV14 Fluviicola + ASV158 Saprospiraceae + ASV1258 SAR11_Clade_Ia

1 0.64 ASV192 Rubripirellula + ASV563 Ulvibacter + ASV1110 Roseivirga

1 0.64 ASV 305 Candidatus_Puniceispirillum + ASV386 SAR324_clade (Marine_
group_B) + ASV742 Flavobacteriaceae NS5_marine_group

2 269 1 0.52 ASV285 Methylophilaceae OM43_clade + ASV581 Rhodobacteraceae 
+ ASV922 Rhodospirillales AEGEAN-169_marine_group NA

1 0.44 ASV14 Fluviicola + ASV32 Marinimicrobia_(SAR406_
clade) + ASV1058 Bacteriovoracaceae

1 0.37 ASV45 Marine_Group_II + ASV297 SAR11_Clade_III + ASV509 Arenicella

1 0.37 ASV190 Flavobacteriaceae NS5_marine_group + ASV423 Vicingus

3 197 1 0.50 ASV111 Candidatus_Actinomarina + ASV583 
Rickettsiales S25-593 + ASV616 Aestuariicoccus

1 0.30 ASV4 Cyanobium_PCC-6307 + ASV505 Microtrichaceae Sva0996_
marine_group + ASV567 Sphingobacteriales NS11-12_marine_group

1 0.30 ASV119 Flavobacteriales NS9_marine_group + ASV398 Formosa 
+ ASV579 Rhodospirillales AEGEAN-169_marine_group

4 128 1 1 ASV246 Comamonadaceae RS62_marine_
group + ASV523 Alphaproteobacteria NRL2

B. Indicators of the different consumption levels based on genera

IndVal

Group Candidate genera A B Indicator genera and their taxonomic affiliation

1 117 1 0.45 Roseivirga + Ulvibacter + Allofrancisella

1 0.36 Acanthopleuribacter + PeM15 + Schlesneria

1 0.36 Limnobacter + Winogradskyella + Rhodobacteraceae HIMB11

2 102 0.90 0.67 Amylibacter + Thalassospira

0.89 0.59 Spongiibacteraceae BD1-7_clade + SAR11_clade Clade_III + Salinisphaera

0.96 0.52 Bacteriovoracaceae + NS2b_marine_group + OCS116_clade

0.95 0.52 RS62_marine_group + Algoriphagus

3 94 0.77 0.50 Alteromonas + PS1_clade + Rhodobacteraceae HIMB11 + Litorimicrobium

0.82 0.40 Alteromonas + Vicingus + Puniceispirillales + Thalassospira

0.78 0.40 Halioglobus + Marinoscillum + PS1_
clade + Muricauda + NS10_marine_group

4 67 1 1 Limnobacter + Algoriphagus + NRL2
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Beyond selecting the most suitable ordination method, en-
suring that retained axes contribute meaningfully to the 
model is essential. Defining an appropriate maximum num-
ber of axes in advance—considering variance explained and 
the balance between variables and observations—optimises 
model performance by enabling rigorous variable selection 
through statistical criteria such as AIC, BIC and significance 
tests. This approach prevents reliance on early axes based 
solely on explained variance and ensures that retained com-
ponents provide biologically relevant information. Notably, 
the significant axes in our final models were not necessarily 
the first ones (Data  S3). Eigenvector-based ordination meth-
ods, such as PCA and PCoA, capture dominant gradients in 
the dataset, but these do not always correspond to the eco-
logical processes driving the response variable. Thus, relevant 
information for regression models may lie in later axes that 

capture subtler ecological patterns more directly related to the 
response variable.

The predictive power of taxonomic composition in explain-
ing oxygen consumption suggests that bacterioplankton com-
munity structure inherently captures both functional and 
environmental influences on this process. This aligns with ev-
idence of phylogenetic conservation in functional traits, such 
as the distribution of carbohydrate-active enzymes (CAZymes) 
across bacterial lineages, from strains to phyla (Berlemont and 
Martiny  2015; López-Mondéjar et  al.  2022). Further traits re-
lated to the capacity to metabolise specific DOM components are 
often conserved at intermediate taxonomic levels, such as genus 
or family (Martiny et al. 2015). The strong correlation between 
taxonomic and functional datasets (Table S4) further supports 
the idea that taxonomic composition can serve as an effective 

FIGURE 7    |    Assignment of experiments to oxygen consumption categories according to ASV- and genus-based indicators, using leave-one-out 
cross-validation (LOOCV). (A) ASV-based indicators. (B) Genus-based indicators. In each panel, the first coloured column represents the true ox-
ygen consumption category for each experiment. The subsequent four columns show the probability of assignment to each oxygen consumption 
category based on the respective indicators. The second coloured column highlights the group to which each sample was assigned based on the indi-
cators. Colours correspond to the four oxygen consumption categories (W1 = low, W2 = moderate, W3 = high, W4 = very high).
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proxy for metabolic potential in the context of this community-
level ecological process.

The strong link between taxonomic composition and oxygen 
consumption observed in this study may also result from the 
focus on a subset of dominant species, selected from the matrix 
of the most abundant taxa. Dominant taxa are theorized to have 
a disproportionate impact on ecosystem processes due to their 
high relative abundance, as proposed by the ‘mass-ratio’ hypoth-
esis (Grime 1998). Additionally, the Metabolic Theory of Ecology 
(Brown et al. 2004) posits that the energy turnover of a popula-
tion is proportional to its biomass, further supporting the central 
role of dominant species in driving ecosystem-level processes. 
While microbial communities include paradigmatic examples 
of specialised processes driven by rare taxa, these are typically 
associated with highly specific metabolic functions or unique 
environmental niches (Strous et al. 1999; Musat et al. 2008). In 
contrast, this study focuses on a broad-scale process—oxygen 
consumption—over a temporal span of 4 years. This extended 
timeframe encompasses a wide range of environmental condi-
tions (Figure  S3), ensuring that the observed relationships are 
robust and representative of the dynamics of a coastal system.

Most taxa identified by EQO as the most relevant for ex-
plaining oxygen consumption belonged to Bacteroidia 
(mainly Flavobacteriales), Alphaproteobacteria (mainly 
Rhodobacteraceae and SAR11), and several clades of 
Gammaproteobacteria. These groups are known for their cen-
tral role in the processing of algal-derived DOM in surface wa-
ters (Buchan et  al.  2014; Teeling et  al.  2016). Similarly, most 
indicators of the different oxygen consumption categories also 
belonged to these groups. Interestingly, representatives of these 
taxa have been recently demonstrated to differentially con-
tribute to oxygen consumption rates in marine environments 
(Munson-McGee et  al.  2022). For instance, SAR11 members, 
here found as indicators of the categories of lower oxygen con-
sumption (W1 and W2), consistently displayed low respiration 
rates in coastal and off-shore sites of the Atlantic and Pacific 
oceans. In contrast, Planktomarina (Rhodobacteraceae) and 
members of Flavobacteriales exhibited higher oxygen con-
sumption rates in evaluations performed in the Gulf of Maine, 
with Flavobacteriales especially active during phytoplankton 
blooms (Munson-McGee et al. 2022). Here we found members 
of Flavobacteriales as indicators for all oxygen consumption cat-
egories (Table 2).

In our dataset, oxygen consumption rates measured in the first 
24 h from 0 to 4.6 μmol of oxygen per hour (Figure 2C), similarly 
to the range of bulk oxygen consumption measured via Winkler 
in the Gulf of Maine (0.01–2.38 μmol) of oxygen per hour; data 
extracted from Figure 1b of Munson-McGee et al. (2022) using 
WebPlotDigitizer (https://​autom​eris.​io).

Nevertheless, the median value in our dataset (1.65 μmol of 
oxygen per hour, n = 50) was notably higher than for the data 
reported in that study (0.29 μmol of oxygen per hour, n = 6). 
Additionally, the range of chlorophyll values in this 4 year study 
(0.4–48.6 μg L−1) was much higher than the range presented for a 
3 year period in the Gulf of Maine (0.2–9.8 μg L−1); data extracted 
from Extended Data Figure 3d of Munson-McGee et al. (2022), 
using WebPlotDigitizer (https://​autom​eris.​io).

Altogether, these data indicate that our system is much more 
productive, which could be a key factor in why Flavobacteriales 
comprise a high proportion of the community (28.5% of the 
sequences in our dataset), as they are usually found under 
resource-rich conditions worldwide (Simon et  al.  1999; 
Kirchman et al.  2003; Alonso et al.  2010; Teeling et al.  2016). 
This may explain their identification as indicators for all oxy-
gen consumption categories in our system, as well as the utmost 
importance of several Flavobacteriales for oxygen consumption 
revealed by EQO analysis. Their increased proportion in the 
ASVsel dataset, compared to the ASV0.005 or the entire dataset, 
further underscores their importance (Figure 2 in Data S2).

Productive conditions might also explain the importance 
of some Gammaproteobacteria (Arenicella, Halioglobus, 
Luminiphilus, Pseudohongiella, OM43_group, RS62_marine_
group), the Verrucomicrobiota SCGC_AAA164-E04 and sev-
eral Rhodobacteraceae (Aestuariicoccus, Amylibacter, HIMB11, 
Lentibacter, Litorimicrobium, Planktomarina, Roseovarius, 
Tateyamaria) identified as key groups for oxygen consumption 
by the EQO and/or IndVal analysis. Members of these groups 
have been repeatedly identified as being particularly abundant 
or active under such conditions (González et al. 2000; Cardman 
et al. 2014; Teeling et al. 2016; Liu et al. 2020; Francis et al. 2021).

Other taxa of high importance in the EQO analysis and/
or selected as indicators of oxygen consumption catego-
ries were the Crenarchaeota Candidatus Nitrosopumilus 
and the Cyanobacteria Cyanobium PCC-6307. Candidatus 
Nitrosopumilus is a specialist in ammonia oxidation (Könneke 
et al. 2005) and has been previously identified by EQO as one of 
the key groups in the prediction of nitrate concentration in the 
TARA Oceans dataset (Shan et al. 2023). Its selection could indi-
cate an indirect connection with oxygen consumption through 
nitrification, while the inclusion of the Cyanobium PCC-6307 
might point to either DOM and/or oxygen production fueling 
heterotrophic aerobic DOM degradation.

Beyond taxonomic composition, functional traits associated 
with DOM degradation were strongly reflected in CAZyme cor-
relations, particularly among glycoside hydrolase (GH) families. 
GH13, GH5 and GH43 emerged as dominant families, indicating 
the widespread utilisation of polysaccharides and glycoconju-
gates in the study system (Stam et al. 2006; Aspeborg et al. 2012; 
Mewis et al. 2016). The high prevalence of these enzymes sug-
gests a substantial terrestrial influence on DOM composition, 
with plant-derived carbohydrates playing a significant role in 
shaping microbial metabolic pathways. The association of GH 
families with specific bacterial groups—GH13 and GH65 with 
Bacteroidia, GH42 with Gammaproteobacteria, and GH5/GH57 
with Alphaproteobacteria—further supports the idea of sub-
strate specialisation among dominant clades.

The high explanatory power of ASV-based models compared to 
genus-based models underscores the importance of fine-scale 
taxonomic resolution in linking microbial composition to oxy-
gen consumption. This is consistent with the proposed shallow 
phylogenetic conservation of organic carbon substrate utilisation 
(Martiny et al., Martiny et al. 2013) and field observations show-
ing that even closely related species engage in different physi-
ological processes modulated by the environmental conditions 
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(Alonso et al. 2009). Nonetheless, genus-based models and in-
dicators still demonstrate high explanatory and, notably, com-
parable predictive power, suggesting that the genus level may 
be adequate for defining functional groups within heterotrophic 
bacterioplankton. This aligns with recent findings that species 
replacement within genera plays a critical role in maintaining 
ecological success (Bustos-Caparros et al. 2024), reinforcing the 
ecological relevance of the genus as a key level of microbial di-
versity organisation.

The fact that taxonomic composition explained a much larger 
fraction of oxygen consumption variability compared to envi-
ronmental variables suggests that microbial community struc-
ture inherently integrates, at least in part, the influence of 
environmental conditions on DOM degradation. However, iden-
tifying the specific environmental drivers remains essential for 
anticipating shifts in oxygen consumption rates under changing 
conditions. Here, DOM quality, water column structure, nutri-
ent availability and temperature emerged as key factors—all 
undergoing significant transformations in coastal seas. Rising 
temperatures are altering DOM quality (Lønborg et  al.  2020), 
potentially expanding bacterial functional diversity (Morán 
et  al.  2023) while increasing ocean stratification limits verti-
cal mixing, affecting nutrient and oxygen availability (Venegas 
et al. 2023). Concurrently, anthropogenic nutrient inputs drive 
eutrophication and the expansion of hypoxic zones (Breitburg 
et  al.  2018) reshaping coastal ecosystem dynamics (Bindoff 
et  al.  2019). Despite these well-documented trends, the extent 
to which environmental shifts will modify oxygen consumption 
rates and microbial community composition remains uncertain. 
A better understanding of these dynamics is needed to refine 
predictive models and assess microbial community resilience.

The South Atlantic Microbial Observatory (SAMO), located at 
the confluence of the Brazil and Malvinas currents and influ-
enced by the Río de la Plata—one of the world's largest estuar-
ies—is a hotspot of microbially mediated processes undergoing 
rapid environmental shifts, reflecting broader global trends 
(Kim et al. 2023). Investigating microbial responses in this dy-
namic setting offers insight into the future trajectories of coastal 
ecosystems.

Beyond SAMO, our approach provides a scalable framework 
for investigating microbially driven biogeochemical processes 
and refining our understanding of microbial functional groups. 
Applying and validating these models across diverse ecosys-
tems will be essential to assess their generality, enhance large-
scale monitoring efforts and advance the implementation of the 
space-for-time substitution approach in marine systems. This 
will ultimately improve predictions of microbial contributions 
to global biogeochemical cycles in the face of accelerating envi-
ronmental change.
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Supporting Information

Additional supporting information can be found online in the 
Supporting Information section. Figure S1: Optimization of the num-
ber of genera selected for explaining oxygen consumption using the 
EQO approach. Applied to the GENsel dataset (ASVsel dataset grouped 
by genera), the analysis shows that selecting up to 18 genera maximises 
the correlation with oxygen consumption. Beyond this threshold, no 
further increase in the R2 value is observed, as indicated by the pla-
teau in the curve. Figure S2: Correlation heatmap between ASVsel and 
CAZsel datasets. Pairwise Spearman correlations were calculated be-
tween the relative abundances of selected ASVs (Y axis) and selected 
CAZyme-encoding genes (X axis). Positive correlations are shown in 
red and negative correlations in blue, with colour intensity indicating 
correlation strength (ranging from −0.6 to +0.6, as indicated in the 
colour bar). Hierarchical clustering was applied to both axes to high-
light patterns of co-association. Figure S3: Variability of environmen-
tal variables measured across samples. The selected variables include 
information on the structure of the water column (Temperature, 
Salinity, Dissolved Oxygen, Turbidity), the trophic status (Chlorophyll 
a concentration, Phycocyanin Fluorescence, Total Nitrogen and Total 
Phosphorous) and representatives of the DOM components quantified 
by HPLC (a proteinaceous hydrophilic, a proteinaceous hydrophobic 
and a Humic hydrophobic component, respectively). Each box rep-
resents the interquartile range (IQR), with whiskers extending to values 
within 1.5 times the IQR. Outliers are represented by points beyond the 
whiskers. Table S1: Summary of ordination results and axis selection 
for modelling microbial community data. Number of variables, ordina-
tion technique, cumulative variance explained by successive axes (when 
applicable) and number of axes selected for modelling are shown for 
each dataset, using PCoA, PCA or NMDS. Table S2: Comparison of the 
linear regression models obtained for the ASV0.005 and CAZall datasets 
with different ordination techniques. The table summarises the num-
ber of features, components and model performance metrics—Akaike 
Information Criterion (AIC), Bayesian Information Criterion (BIC) 
and explained variance (adjusted R2)—for both the full and optimised 
models applied to the ASV0.005 and CAZall datasets in explaining ox-
ygen consumption during DOM degradation experiments. Table S3A: 
Variables retained in Lasso regression models using ordination axes 
as predictors. Table S3B: Variables retained in Lasso regression mod-
els using raw data as predictors. Table S4: ASVs with strong positive 
correlations (> 0.5) with CAZymes. Data S1: DOM Characterisation. 
Data  S2: Bacterioplankton taxonomic and functional composition. 
Data S3: Detailed linear models. 
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