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ABSTRACT
Phytoplankton blooms create a substrate-rich environment that supports the growth of bacterial planktonic heterotrophs.
Previously, we studied the dynamics of such bacterioplankton at a long-term ecological research site near the coast of Helgoland
Island (North Sea) once a day. Here, we present a novel dataset (available under the PRIDE-ID: PXD055396) indicating significant
differences at the protein level in a semi-diurnal analysis. Using metaproteomics, we studied changes in the free-living (0.2–
3 µm) bacterial community that occurred between early (7 am) and late (9 pm) sampling over 3 days. The results highlight the
sensitivity, robustness, and reproducibility of mass spectrometry-based metaproteomic analyses to assess changes in the activities
of the bacterioplankton communities. Taxonomic analyses revealed significant changes in the abundance of 65 bacterial genera.
Particularly, proteins from the flavobacterial generaCandidatus Prosiliicoccus andAurantivirgawere significantlymore abundant
in the late samples. This comprehensive dataset highlights semi-diurnal changes in bacterial community composition and
metabolic activity during a phytoplankton bloom that would have remained undetected with a once-per-day sampling approach.

Just as othermeta-omics technologies, microbialmetaproteomics
expands the application of proteomics from pure cultures and
simple model systems to complex biological systems consisting
of entire microbial communities and possibly host cells [1].
However, conducting metaproteomic studies is often challenging
due to sample diversity and complexity [2–5]. Over the past
decade, advancements in the preparation of complex samples and

innovativemethods of data acquisition and analysis have allowed
for a more widespread and routine use of metaproteomics. In
recent years, numerous metaproteome studies have provided
unique insights into the activity of microbial communities in
various environments, such as the oceans [6], the human gut [7–
9], soil [10, 11], wastewater treatment plants [12, 13], and even
extreme habitats [14] like high-CO2 aquifers [15]. Studies focusing

Abbreviations: CAZymes, carbohydrate-active enzymes; LTER, long-term ecological research; MAGs, metagenome-assembled genomes; PCoA, principal coordinate analysis; R2, Pearson correlation
coefficient.
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on the microbial nutrient transport in the South Atlantic Ocean
[16], biogeochemical processes within the oxygen minimum
zones at a seasonally stratified fjord [17], or the dynamics of the
carbon flux in themarine ecosystems [18, 19] showed the potential
and challenges of ocean metaproteome studies [6].

Marine microbiomes have increasingly garnered attention due
to their impact on global biogeochemical cycles. Marine phyto-
plankton blooms can trigger large-scale bacterioplankton blooms,
which, though short-lived, play a crucial role in marine carbon
cycling [20–22]. The blooming and subsequent decay of algae
releases substantial amounts of organic matter, including large
amounts of various algal polysaccharides. Distinct clades of
heterotrophic planktonic bacteria benefit from these substrates
during bloom events. Bacterial polysaccharide utilization special-
ists degrade algal polysaccharides via specific carbohydrate-active
enzymes (CAZymes) [20, 23, 24]. Due to their usually high
substrate specificity, a diverse array of such CAZymes is required
for the complete breakdown and utilization of each distinct
algal polysaccharide [25–28]. In conjunction with CAZymes,
specific types of TonB-dependent transporter proteins allow these
bacteria to bind and transport longer oligosaccharides into the
periplasm [23, 29, 30].

During phytoplankton blooms, dynamic changes in environ-
mental conditions, nutrient availability, and substrate supply, as
well as in interactions among organisms (animals, zooplank-
ton, phytoplankton, bacterioplankton, and viruses), result in
highly dynamic marine microbiome composition. Additionally,
phototrophic organisms exhibit a specific temporal relationship
between transcriptome, proteome, and metabolome, due to the
presence of light-dark cycles [31, 32], adding another level
of complexity in these dynamic systems. For instance, in a
controlled light-dark in vitro study of the phototrophic marine
cyanobacterium Prochlorococcus MED4, significant variabilities
were detected in the relationship between mRNA and protein
abundances, with more pronounced oscillations in transcript
abundances and later peaks in protein abundances [31]. Several
in situ studies on diel oscillation have been conducted in marine
ecosystems with surface water temperatures above 20◦C, such as
the North Pacific Subtropical Gyre, the Daya Bay in the South
Chinese Sea, and the North Atlantic Ocean near New Jersey [33–
35], but lacking for temperate marine ecosystems. Some studies
confirmed diel oscillations of around half of all Prochlorococcus
transcripts [36], and 70% of the targeted metabolites [37]. These
studies highlight that different effects can be observed on the
transcript, protein, and metabolite levels.

To monitor changes in plankton composition, a long-term eco-
logical research (LTER) site was established off the coast of Hel-
goland Island in the rather cold (about 10◦C water surface tem-
perature during springtime) southern North Sea (“Kabeltonne”,
54◦11.3′N, 7◦54.0′E, DEIMS.iD: https://deims.org/1e96ef9b-0915-
4661-849f-b3a72f5aa9b1). For this LTER, phytoplankton data
has been systematically collected since 1962, and zooplankton
data since 1975, together with accompanying physicochemical
data [38, 39]. Regular sampling of bacterioplankton at the Hel-
goland Roads LTER site has been conducted since 2009 and
analyzed using a combination of methods, including state-of-the-
art metaproteomics [20, 22, 40–44]. These long-term sampling
campaigns revealed that the complex bacterial communities that

thrive during and after phytoplankton blooms are dominated
by annually recurrent clades [40, 45] with substantial changes
in the relative abundances, sometimes within a day or two. It
was recently demonstrated that, especially during spring blooms
with little top-down (predator) control, the composition of this
bacterial community is significantly shaped by the availability
of dissolved algal glycans, as well as by bacterial glucans that
living bacteria recycle from bacterial necromass [43]. In 2020, we
sampled at the Helgoland Roads LTER site between 2nd March
and 26th May. Previously, we published data on total bacterial
cell counts and cell counts for specific clades, chlorophyll a, wind
direction data, physicochemical and phytoplankton, glucan and
saccharide measurements, as well as metagenomes, metatran-
scriptomes, and additionally for 15 sampling time points (7 am),
metaproteomics data [42–44].

So far, diurnal changes have been out of the scope of the long-
term studies. Here, we applied a metaproteomics workflow in
a temperate marine ecosystem (Table S1) to investigate short-
term changes in the free-living (0.2–3 µm) bacterial community.
We used samples collected at semi-diurnal intervals at 7 am
(“early”) and 9 pm (“late”) for 3 days (5th, 6th, and 7th May
2020) and compared them with samples taken before (29th
April, 7 am) and afterwards (11th May, 7 am). The early samples
were taken between 67 (29th April, 7 am) to 91 min (11th May,
7 am) after sunrise, and the late samples were taken 10 min
(5th May, 9 pm) to 14 min (7th May, 9 pm) before sunset
(Table S1). Here, we present brief first insights into short-term
changes in the community compositions and activities of the free-
living bacterioplankton communities that were sampled with
different time intervals of 10 (between 9 pm and 7 am) and
14 h (between 7 am and 9 pm). Therefore, seawater samples
were collected at 1 m depth and sequentially filtered through
142 mm polycarbonate membrane filters (Millipore, Schwalbach,
Germany) with decreasing pore sizes (10, 3, and 0.2 µm) as
previously described [43] and in the Supporting Information. The
proteins of the free-living bacterial community were extracted
from one-eighth of a 0.2 µm filter by adding lysis buffer, heating,
and sonication treatment in triplicate. After centrifugation (1min,
4◦C, 5000 × g), the proteins in the supernatant were precipitated
by adding pre-cooled trichloroacetic acid (20% [v/v]), pelleted
via centrifugation (1 h, 4◦C, 12,000 × g), washed three times
with pre-cooled acetone and dried. The remaining protein pellet
was resuspended in 2× Laemmli SDS sample loading buffer (4%
SDS, 20% glycerol, 10% 2-mercaptoethanol, 0.002% bromophenol
blue in 0.125 M Tris-HCl [pH 6.8]) and incubated for 5 min
at 95◦C before separation via SDS-PAGE (Criterion TG 4%–20%
Precast Midi Gel, BIO-RAD Laboratories, Inc., Hercules, CA,
USA). Afterwards, the gel was fixated (40% ethanol [v/v], 10%
acetic acid [v/v]), and stained with Coomassie [46], before each
gel line was cut into 20 equally sized pieces. The gel pieces
were cut into smaller pieces, destained three times with washing
buffer (200 mM ammonium bicarbonate in 30% ACN [v/v]), and
dehydrated as described by Bonn et al. [47] before the proteins
were in-gel reduced and alkylated. After washing, dehydrating,
and drying of the gel pieces, the proteins were tryptically digested
(2 µg/mL trypsin, Promega, Fitchburg, WI, USA), incubated
for 15 h at 37◦C and eluted first with 120 µL solvent A (0.1%
acetic acid [v/v]) and second with 100 µL 30% ACN (v/v) for
15 min in an ultrasonication bath (SONOREX SUPER RK 102 H,
Bandelin, Berlin, Germany). The pooled eluates were desalted via
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ZipTip C18 (Merck Millipore, P10 tip size, Burlington, MA, USA)
according to the manufacturer’s instructions and loaded onto
in-house packed capillary columns (20 cm length, 75 µm inner
diameter, Dr. Maisch GmbH, Ammerbruch, Germany, RepsoSil
pur C18 material with pore size 120 Å and particle size 1.9 µm) via
an Easy nLC1000 LC (Thermo Fisher Scientific, Waltham, MA,
USA) coupled to a Q Exactive mass spectrometer (Thermo Fisher
Scientific, Waltham, MA, USA) in data-dependent acquisition
mode and separated using a non-linear binary gradient (131 min)
from 1% to 99% solvent B (99.9% ACN [v/v], 0.1% acetic acid [v/v])
in solvent A at a constant flow rate of 300 nL/min. The MS1
scan was recorded in the orbitrap with a resolution of 140,000
at 200 m/z and a mass window of 300 to 1650 m/z. The 15 most
abundant precursor ions were selected for higher-energy C-Trap
dissociation fragmentation with enabled dynamic exclusion.

MS/MS spectra were searched using a two-step searching strat-
egy [48]. First, all MS/MS spectra were searched against a
sample-specific, non-redundant metagenome-derived database
as described in the Supporting Information using Mascot [49]
(Table S2) with the following parameters: fragment ion mass
tolerance and parent ion tolerance of 10 ppm, no missed
cleavages, variable modification on methionine (oxidation), and
fixed modification on cysteine (carbamidomethylation). Search
outputs from replicates were combined in Scaffold [50] (using
X!Tandem [51] for validation with default settings). Peptide and
protein identifications were accepted with a probability higher
than 95% and 99%, respectively. The eight subset databases
for each time point (including only identified proteins) were
combined, and after filtering for redundancy using CD-HIT [52]
(clustering threshold of 97% identity), decoy entries were added,
and all MS/MS spectra were searched again with the constructed
non-redundant subset database (88,300 entries including reverse
entries). The Mascot [49] outputs were analyzed in Scaffold
[50] as described above. Peptide and protein identifications were
accepted if they contained at least two unique peptides, whereas
this criterion was not applied to the first searching step. Peptide
probabilities from Mascot and X!Tandem were assigned by the
Scaffold Local FDR algorithm or Peptide Prophet algorithm [53]
with delta-mass correction, respectively. Protein identifications
were accepted if they could be established at greater than 99%
probability by the Protein Prophet algorithm [54] and contained
at least two unique peptides. Proteins that contained similar
peptides and could not be differentiated based on the MS/MS
analysis alonewere grouped to satisfy the principles of parsimony.
The mass spectrometry proteomics data have been deposited
to the ProteomeXchange Consortium (https://proteomecentral.
proteomexchange.org) via the PRIDE partner repository [55]
with the dataset identifier PXD055396. Functional and taxonomic
annotation was performed by an in-house pipeline. For this
aim, protein sequences were mapped onto 2020 high-quality
MAGs [42] using Diamond BLASTP (v2.1.1.155, flags: –evalue
1E-4 –id 95 –query-cover 70 –subject-cover 70. Sequences that
remained unmapped were classified as either “prokaryotic” or
“non-prokaryotic” using BASTA (v1.4.1, with the options: –m 1
–i 0 –l 0 –e 0.001 –p 90), along with Diamond BLASTP (options:
–evalue 0.001 –k 100) against the NCBI non-redundant protein
database (“NCBI_nr”; as of 22nd February 2023). For “non-
prokaryotic” sequences, the NCBI_nr results were used for Last
Common Ancestor predictions via BASTA, while “prokaryotic”
sequences were classified based on Diamond BLASTP results

against the Genome Taxonomy Database (“GTDB”; r214.1) [56]
with identical thresholds.

All LC-MS/MS measurements generated a total of 20.5 million
recorded spectra, of which 5.9 million could be confidently
identified. On average, 858,049 (± 132,309) spectra were gener-
ated, of which 245,663 (± 45,788) were identified per sample,
resulting in an average identification rate of 28.8% (± 5.0%).
In classical metaproteomic studies, spectral identification rates
typically range from 5% to 30% [5]. A cross-laboratory (Critical
Assessment of MetaProteome Investigation—CAMPI) study on
stool samples reported identification rates ranging from 15.7%
to 41.9% (average 23.2%) [4]. This variation was attributed to
differences in protein extraction, sample preparation, and mass
detection, followed by the same search strategy between the
different labs using the X!Tandem search engine and a publicly
available database.

To check the quality and robustness of the data, we calculated
the squared Pearson correlation coefficient (R2) of the weighted
spectral counts for protein groups as a measure of the linear
correlation between two individual technical replicates (Figure 1).
For each pairwise combination of the three replicates of each sam-
pling time point, the R2 values indicated a high reproducibility.
All R2 values between replicates exceeded 0.94. These R2 values
are comparable to stool samples that were analyzed directly after
collecting fecal specimens compared to the same sample after
being frozen for 2 months [57]. Only samples from the 7th May
at 9 pm were an exception with a lower correlation value of 0.73
between replicates 1 and 3.

In total, we identified 26,263 protein groups in the complete
dataset (excluding contaminations and decoy hits) ranging from
6961 (7th May 2020, 9 pm, replicate 2) to 13,066 protein groups
(6th May 2020, 7 am, replicate 1) per sample (with an average of
10,759± 1536) (Table S3). More spectra were identified per protein
group in the 9 pm samples (considering weighted spectra, which
represent the sum of unique peptide spectra per protein group
and a fractional contribution of spectra from shared peptides, on
average 24.8 identified spectra per protein group, with a 5% to
95% percentile of 1.86 to 88.5) compared to the 7 am samples (on
average 21.0 identified spectra per protein group, with a 5% to 95%
percentile of 1.81 to 76.7). After filtering for protein groups present
in at least two of three replicates in at least one sampling time
point, we quantified 19,933 protein groups, with numbers ranging
from 7684 (7th May 2020, 9 pm) to 12,248 (6th May 2020, 7 am)
protein groups per sampling time point. On average, significantly
more protein groups were identified and quantified in the 7 am
samples (11,426 ± 1250 identified and 11,110 ± 1032 quantified)
compared to the 9 pm samples (9561 ± 1226 identified and 9273
± 1145 quantified, paired Student’s t-test, p value < 0.0002).

At the end of April 2020, the first phase of the spring phytoplank-
ton bloom that was dominated by Ditylum brightwellii diatoms
ended, and a second bloom was dominated by Cerataulina
pelagica and to a lesser extent Chaetoceros sp. diatoms [42]. At
the same time, total bacterial cell counts increased again after
a decline of D. brightwellii numbers towards the end of the first
bloom. The frequency of metagenomic 16S rRNA gene sequences
indicated a shift from Alphaproteobacteria dominating during
the first blooming phase towards Bacteroidota taking over at

21

 16159861, 2025, 17-18, D
ow

nloaded from
 https://analyticalsciencejournals.onlinelibrary.w

iley.com
/doi/10.1002/pm

ic.70001 by M
PI 317 M

arine M
icrobiology, W

iley O
nline L

ibrary on [05/01/2026]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://proteomecentral.proteomexchange.org


FIGURE 1 Heatmap representing the squared Pearson correlation coefficients (R2) of the raw quantitative values (weighted spectra) from different
samples taken between the 29th April and the 11thMay 2020. The color gradient represents the correlation, with red indicating higher correlation values
and blue representing lower correlation values. The x- and y-axes correspond to the different samples.

the beginning of the second phytoplankton bloom [42]. Con-
sequently, a noticeable shift in the metaproteome composition
was detected over the full 13-day period between 29th April and
11th May 2020. In total, 4379 protein groups in our dataset were
quantified (in at least two of the three replicates) in all samples,
representing the largest overlap (22.0%) compared to all possible
intersections between the eight sampling time points (Figure
S1). The first (29th April) and last (11th May) sampling time
points differed from the others, with 2531 (12.7%) and 1426 (7.2%)
protein groups being detected exclusively in these two sampling
time points, respectively. Furthermore, 1048 (5.3%) protein groups
were detected in all samples except on 29th April, confirming the
overall shift in bacterioplankton composition in the second bloom
phase. The semi-diurnal shiftsmeasured from5th to 7thMaywere
smaller than the shifts within 4 to 6 days.

To test for short-term dynamics on the level of summed protein
group abundances between the different taxonomic groups in
our dataset, we initially compared alpha-diversity based on the
Shannon index calculated for the genus level between early and

late samples from 5th to 7th May (Figure S2A). This metric
describes the taxonomic richness and evenness of the abundance
distribution of a microbial community within a sample with
greater values indicating a more diverse community. A signifi-
cantly higher diversity was detected in 7 am samples compared
to 9 pm samples (paired Student’s t-test, p value < 0.0002).

In the spring bloom study of 2020, we investigated bacterioplank-
ton metagenomes from 30 time points (including the eight time
points we analyzed here) from the same bloom, which allowed
us to reconstruct a total of 251 non-redundant metagenome-
assembled genomes (MAGs) of free-living bacteria [42]. We
mapped the 19,933 protein groups quantified in our dataset back
to these MAGs resulting in 11,622 (59%) protein groups mapping
to 198 MAGs (79% of all MAGs detected). This indicates that the
constructedMAGs represented themost abundant and active taxa
and underscores the high quality of the metaproteome dataset. A
phylogenetic tree was generated based on 16S rRNA sequences
for individual MAGs, previously [42]. Using summed protein
group abundances from those mapped protein groups, pair-wise

22 Proteomics, 2025
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FIGURE 2 The composition of marine microbiota between the 29th April and 11th May 2020 at the Helgoland LTER station “Kabeltonne” in
the North Sea based on metaproteomics data. The quantified protein groups assigned to the class level were summed. Low-abundant members of
taxonomical groups were merged to “Others”. The smaller inset shows additional classes that are included as “Others” in the main plot. In the absence
of an assignment to any taxonomical group, respective proteins were assigned as unclassified to the next higher taxonomic level. The vertical dotted
lines indicate the different sampling time points. The time between sunrise and sunset is indicated in yellow and the time between sunset and sunrise
in black in the horizontal bar at the top of the plot (weather data, Table S1).

weighted Unifrac distances were calculated as a measure of beta
diversity. These distances were then used as the input for a
principal coordinate analysis (PCoA, Figure S2B). All sample
points were separated from each other with days being sorted
along the x-axis and sampling time along the y-axis.

After these general trends, we analyzed short- and long-term
trends across various taxonomic levels based on summed protein
group abundances. The increase in protein group abundances
of the bacterial community (Figure S3A) at the beginning of
the C. pelagica-dominated phytoplankton bloom phase could
be mainly attributed to changes in the dominating phyla Bac-
teroidota and Pseudomonadota (formerly Proteobacteria) (Figure
S3B). However, less abundant phyla, such as Campylobacterota,
also exhibited long-term changes in protein group abundances,
whereas the phylum Actinobacteriota exhibited short-term fluc-
tuations between the 7 am and 9 pm samples. The dominant
classes Alphaproteobacteria, Gammaproteobacteria, and Bac-
teroidia were subject to strong fluctuations (Figure 2), which
mainly involved the orders Rhodobacterales, Pelagibacterales,
Pseudomonadales, Enterobacterales, and Flavobacteriales (Figure
S3D). Rhodobacteraceae, Porticoccaceae, Pelagibacteraceae, and
Alteromonadaceae (Figure S3E) were dominating proteobacterial
families including the abundant genera Amylibacter, Plank-

tomarina and members of the gammaproteobacterial SAR92
(HTCC2207) clade (Figure S3F). Especially the dominant gen-
era Cd. Prosiliicoccus (previously Ulvibacter) and Aurantivirga
(SCGC-AAA160-P02) (Figure S3F) of the familyFlavobacteriaceae
showed higher abundance at the later sampling time points
(Figure S3E). A rapid increase of Bacteroidota abundance after
29th April has already been shown for corresponding metage-
nomic 16S rRNA gene frequencies [42]. The indicated daytime-
dependent changes in abundances in the metagenomic gene
frequencies were confirmedwith ourmetaproteomic data, for the
abundant genera Amylibacter, Polaribacter, and Aurantivirga.

We identified significant changes in 65 relevant bacterial genera
based on summed protein group abundances between early and
late samples taken between 5th May and 7th May. As depicted
in Figure 3, the different protein abundances between early and
late samples of these genera were clustered depending on their
abundance in all eight sampling time points (including 29th April
and 11th May). The most interesting cluster consisted of genera
with low overall protein group abundances at the beginning of
May and higher protein group abundances in the 9 pm samples
than the 7 am samples. This group consisted of the previously
mentioned Cd. Prosiliicoccus and Aurantivirga, which were also
more abundant at the beginning of the second bloom phase (peak

23

 16159861, 2025, 17-18, D
ow

nloaded from
 https://analyticalsciencejournals.onlinelibrary.w

iley.com
/doi/10.1002/pm

ic.70001 by M
PI 317 M

arine M
icrobiology, W

iley O
nline L

ibrary on [05/01/2026]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



FIGURE 3 Heatmap and hierarchical clustering of significantly changed genera. The metaproteomic dataset from 5th May (7 am) until 7th May
(9 pm) was analyzed using the R package ANCOMBC2 using summed protein abundances on the genus level. Significantly changed genera were
hierarchically clustered and protein abundances of 29th April and 11th May were included.

on 6th May for Cd. Prosiliicoccus and 8th May for Aurantivirga)
as indicated by the abundances inferred from metagenomic data
or microscopic cell counting via catalyzed reporter deposition-
fluorescence in situ hybridization [42]. For most other clusters,
protein groups were more abundant in the 7 am samples than the
9 pm samples, although these clusters showed different protein

group abundances on the 29th April and 11th May. Members of
the Alteromonadaceae, Pelagibacteraceae, and Methylophilaceae
families showed the highest protein group abundance for the
5th and 6th May, whereas the cluster containing unclassified
Actinomycetota, unclassified Gammaproteobacteria and Posei-
donibacter showedhighest abundance on 11thMay and the cluster

24 Proteomics, 2025
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containingFabibacter peaked at the end of the first phytoplankton
bloom phase (29th April).

Finally, we were interested in the function of the proteins with
significant short-term abundance changes. For this purpose,
protein groups with significantly different abundances were
identified using theR packageDEqMS [58] (Table S3, labeledwith
“both” in the column DEqMS result). The analysis identified 422
such protein groups, 369 of which were more abundant in the
morning samples. Functional annotation was performed using
MAG annotations. For sequences that could not be assigned
to MAGs, BLAST alignments of the protein sequences were
conducted against the Genome Taxonomy Database (GTDB) [56]
to find the most similar and related sequence. While 72 of
the different abundant proteins were annotated as hypothetical
proteins, the second highest number of differentially abundant
proteins (47 significantly changed protein groups)were annotated
as TonB-dependent receptors, which mediate substrate-specific
transport across the outer membrane [59].

Previous studies have shown that bacterioplankton composition
is highly dynamic during spring in the North Sea [20, 22, 43,
44, 60–64]. Changes over several days are more pronounced
compared to the changes that occur within a day, as is shown
in both our analysis and metagenome gene frequency analyses
[42]. Nevertheless, our comprehensive metaproteome dataset
suggests that significant changes occurred in the abundances
of distinct bacterial protein groups at both, the taxonomic and
functional levels, between the early and late samples. An even
higher temporal resolution would be necessary for a more
detailed analysis of diurnal adaptive changes of the bacterial
physiology in the complex microbiomes during phytoplankton
blooms. We anticipate that this study will pave the way towards
such studies, and hope that the presented dataset will be a
useful resource for researchers during the development of data
evaluation and modeling approaches. Additionally, our prelim-
inary study reveals that the timing of sampling is crucial in
long-term studies. In the case of irregular sampling, detected
changes could be caused by diurnal changes and the associated
changes in environmental conditions like the solar irradiation
intensity. Changes at the transcriptome level are more dynamic
as shown for dial oscillation in phototrophic bacteria [31]. Yet,
as we show here, changes do also occur at the protein level.
Owing to contemporary refined metaproteomics, such changes
can nowadays be detected even in highly complex, diverse, and
dynamic systems in situ.
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