Seitenpfad:

Stickstoff im frühen Ozean - unterschätzte Bakterien treten ins Rampenlicht

06.08.2021

Bislang wurde angenommen, dass vor allem Cyanobakterien dafür verantwortlich waren, in der Frühzeit unseres Planeten Stickstoff aus der Atmosphäre zu fixieren und dadurch in die Biosphäre einzubringen. Forschende des Max-Planck-Instituts für Marine Mikrobiologie in Bremen zeigen nun, dass auch Schwefelpurpurbakterien unter Bedingungen wie im Proterozoischen Ozean substanziell zur Stickstofffixierung beigetragen haben könnten.

Lago di Cadagno
Der Lago di Cadagno in den südlichen Schweizer Alpen ist eine Besonderheit: Er ist permanent geschichtet, weil salzhaltige Quellen in der Tiefe eine Durchmischung verhindern. In den oberen Metern ist Sauerstoff vorhanden und der Nährstoffgehalt niedrig. Die untere Schicht ist sauerstofffrei und reich an Sulfid, wodurch sich eine stabile Zwischenschicht mit steilen Konzentrationsverläufen an Sauerstoff und Sulfid bildet. Hier nutzen die Schwefelpurpurbakterien die Sonnenenergie, um Sulfid zu oxidieren – und Stickstoff zu fixieren. (© Miriam Philippi)

Stickstoff ist unverzichtbar für alle Le­bensformen: Er ist Teil von Eiweißen, Nukleinsäuren und anderen Zellstrukturen. Deswegen war es auf der frühen Erde von großer Bedeutung für die Entwicklung des Lebens, Stickstoff aus der Atmosphäre nutzen zu können. Wer damals aber diese sogenannte Stickstofffixierung durchgeführt hat, und mit Hilfe welchen Enzyms, ist bisher nicht geklärt. Nun zeigen Forschende des Bremer Max-Planck-Instituts für Marine Mikrobiologie, dass unter ähnlich kargen Bedingungen wie im proterozoischen Ozean eine bislang unterschätzte Bakteriengruppe sehr effizient Stickstoff fixieren kann.

Ein „kleiner Ur-Ozean“ in den Schweizer Alpen

Da der proterozoische Ozean nun einmal nicht mehr für direkte Untersuchungen zur Verfügung steht, nutzten die Forschenden um Miriam Philippi und Katharina Kitzinger vom Bremer Max-Planck-Institut einen vergleichbaren Lebensraum: den Schweizer Alpensee Lago di Cadagno. Anders als die meis­ten anderen Seen ist der Lago di Cadagno stabil geschichtet, die oberen und unteren Wasserschichten mischen sich also nicht. In der Übergangsregion zwischen der oberen, sauerstoffhaltigen und der unteren, sauerstofffreien und sulfidhaltigen Schicht leben Schwefelpurpurbakterien. Sie kommen ohne Sauerstoff aus, betreiben Photosynthese und oxidieren Schwefel. „Der Fund von Fossilien dieser Gruppe von Mikroorganismen weist darauf hin, dass sie schon vor mindestens 1,6 Milliarden Jahren, also im Proterozoikum, auf unserer Erde lebten“, so Erstautorin Philippi. „Wir haben es bei diesem See und mit diesen Bakterien also mit einem System zu tun, das viele Gemeinsamkeiten mit dem frühen Ozean hat.“ Deshalb eignet sich dieser auch so gut, um mehr über die Prozesse auf der frühen Erde zu erfahren.

Schwefelpurpurbakterien
Fluoreszenzbilder von Schwefelpurpurbakterien im Süßwassersee Cadagno (obere Panele, in Grün und Purpur), sowie deren Einzelzell-Stickstoff-Fixierung, gemessen am nanoSIMS (untere Panele, warme Farben bedeuten höhere Aktivität). © Max-Planck-Institut für Marine Mikrobiologie/M. Philippi

Schwefelpurpurbakterien fixieren Stickstoff

Mit einer Kombination aus biogeochemischen und molekularen Analysen entdeckten Philippi und ihre Kolleginnen und Kollegen, dass die Schwefelpurpurbakterien sehr effizient Stickstoff fixieren. Stickstofffi­xierung ist die Umwandlung von wenig reaktionsfreudigem Stickstoffgas aus der Atmosphäre zu Stick­stoffverbindungen, die auch andere Organismen nutzen können, zum Beispiel Algen. „Soweit wir wissen, ist das der erste Nachweis von Stickstofffixierung durch in der Umwelt lebende Schwefelpurpurbakterien“, erklärt Mitautorin Katharina Kitzinger. „Wir stellten fest, dass sie dazu das heutzutage am weitesten verbreitete Enzym, die Molybdän-Nitrogenase, nutzen. Obwohl dieses Enzym nicht selten ist, waren wir sehr überrascht, es im Cadagno-See zu finden.“ Denn dort gibt es äußerst wenig Molybdän im Wasser – genauso wie im proterozoischen Ozean. Deswegen nahm man an, dass auf der frühen Erde Nitrogenasen ohne Molybdän vorherrschten. „Die Molybdän-Nitrogenase funktioniert also auch bei niedrigen Konzentrationen von Molybdän ganz hervorragend.“

„Wir liefern damit den ersten Hinweis, dass Schwefelpurpurbakterien für die Stickstofffixierung im frühen Ozean mitverantwortlich gewesen sein könnten“, so Philippi weiter. „Bisher wurde zumeist angenommen, dass Cyanobakterien den Großteil der Stickstofffixierung ausführten. Nun zeigen wir, dass die Rolle der Schwefelpurpurbakterien in diesem Prozess unterschätzt wurde.“

Originalveröffentlichung

Beteiligte Institutionen

Max-Planck-Institut für Marine Mikrobiologie, Bremen, Deutschland

Department für Umweltsystemwissenschaften, ETH-Zürich, Zürich, Schweiz

Labor für Angewandte Mikrobiologie, Departement für Umwelt, Bau und Gestaltung, Fachhochschule Südschweiz (SUPSI), Bellinzona, Schweiz

Eawag, Eidgenössisches Institut für Wasserversorgung, Abwasserreinigung und Gewässerschutz, Dübendorf und Kastanienbaum, Schweiz

Rückfragen bitte an:

Pressereferentin

Dr. Fanni Aspetsberger

MPI für Marine Mikrobiologie
Celsiusstr. 1
D-28359 Bremen

Raum: 

1345

Telefon: 

+49 421 2028-9470

Dr. Fanni Aspetsberger
Back to Top