Page path:

Bac­terial In­di­vidu­al­ism: A Sur­vival Strategy for Hard Times

May 11, 2016

No two bacteria are identical – even when they are genetically the same. A new study reveals the conditions under which bacteria become individualists and how they help their group grow when times get tough.

 
Whether you are a hu­man or a bac­terium, your en­vir­on­ment de­term­ines how you can de­velop. In par­tic­u­lar, there are two fun­da­mental prob­lems. First: what re­sources can you draw on to sur­vive and grow? And second: how do you re­spond if your en­vir­on­ment sud­denly changes?
A group of re­search­ers from Eawag, ETH Zurich, EPFL Lausanne, and the Max Planck In­sti­tute for Mar­ine Mi­cro­bi­o­logy in Bre­men re­cently dis­covered that the num­ber of in­di­vidu­al­ists in a bac­terial pop­u­la­tion goes up when its food source is re­stric­ted. Their find­ing goes against the pre­vail­ing wis­dom that bac­terial pop­u­la­tions merely re­spond, in hind­sight, to the en­vir­on­mental con­di­tions they ex­per­i­ence. In­di­vidu­al­ists, the study finds, are able to pre­pare them­selves for such changes well in ad­vance.
Frank Schreiber
Die Bakterien-kulturen von K. oxy­to­ca wurden in sogenannten Chemostaten (kontinuierlichen Kulturen) mit verschiedenen Konzentrationen von Ammonium und einem Überschuss an elementarem, gasförmigem Stickstoff (N2) versorgt.
 

Scarcity fosters di­versity, di­versity pro­motes flex­ib­il­ity

In a re­cent pa­per in the journal Nature Microbiology, re­search­ers work­ing with Frank Schreiber have shown that in­di­vidual cells in bac­terial pop­u­la­tions can dif­fer widely in how they re­spond to a lack of nu­tri­ents. Al­though all of the cells in a group are ge­net­ic­ally identical, the way they pro­cess nu­tri­ents from their sur­round­ings can vary from one cell to an­other. For ex­ample, bac­teria called Klebsiella oxytoca pref­er­en­tially take up ni­tro­gen from am­monium (NH4+), as this re­quires re­l­at­ively little en­ergy. When there is­n’t enough am­monium for the en­tire pop­u­la­tion, some of the bac­teria start to take up ni­tro­gen by fix­ing it from ele­ment­ary ni­tro­gen (N2), even though this re­quires more en­ergy. If the am­monium sud­denly runs out al­to­gether, these cells at least are pre­pared. While some cells suf­fer, the group as a whole can con­tinue to grow. “Al­though all of the bac­teria in the group are ge­net­ic­ally identical and ex­posed to the same en­vir­on­mental con­di­tions, the in­di­vidual cells dif­fer among them­selves,” says Schreiber.

Detailed insights thanks to the latest technology

Schreiber and his col­leagues were only able to re­veal the as­ton­ish­ing dif­fer­ences between the bac­teria by study­ing them very closely. “We had to meas­ure nu­tri­ent up­take by in­di­vidual bac­terial cells – even though these are only 2 μm large,” ex­plains Schreiber. “Usu­ally, mi­cro­bi­o­lo­gists study the col­lect­ive prop­er­ties of mil­lions or even bil­lions of bac­teria. It was only thanks to the close col­lab­or­a­tion between the re­search groups, and by pool­ing our ex­pert­ise and tech­nical equip­ment, that we were able to study the bac­teria in such de­tail.”
 
EPFL, Alain Herzog
Das NanoSIMS an der EPFL Lausanne und am Center for Advanced Surface Analysis der Universität Lausanne. Zu sehen sind (von links) die Mitautoren Stéphane Escrig und Anders Meibom sowie Florent Plane.
 
Bacteria are individualists, too

The present study shows to what ex­tent in­di­vidu­al­ity – in bac­teria and in gen­eral – can be es­sen­tial in a chan­ging en­vir­on­ment. Dif­fer­ences between in­di­vidu­als give the group new prop­er­ties, en­abling it to deal with tough en­vir­on­mental con­di­tions. “This in­dic­ates that bio­lo­gical di­versity does not only mat­ter in terms of the di­versity of plant and an­imal spe­cies but also at the level of in­di­vidu­als within a spe­cies,” says Schreiber.
Next, Schreiber and his col­leagues plan to study whether the in­di­vidu­al­istic be­ha­vior of spe­cific in­di­vidu­als is of equal im­port­ance in nat­ural en­vir­on­ments.
Max-Planck-Institut für Marine Mikrobiologie, M. Schlösser
Technikerin Daniela Tienken und Mitautor Sten Littmann am NanoSIMS (Nanometer-scale Secondary Ion Mass Spectrometer) am Max-Planck-Institut für Marine Mikrobiologie. Das NanoSIMS ist eines der Großgeräte, die die vorliegende Untersuchung möglich machten. Dieses Gerät erlaubt, die Stickstoffixierung einzelner Zellen in einer Bakterienkultur zu messen.
Frank Schreiber
Einzelne Zellen von K. oxytoca. Das Bild wurde mit einem NanoSIMS aufgenommen und zeigt die Anreicherung der Zellen mit schwerem Stickstoff (15N), nachdem diese mit schwerem elementarem Stickstoff (15N2) gefüttert wurden. Die unterschiedliche Färbung zeigt, dass die genetisch gleichen Zellen einer Population unterschiedlich viel elementaren Stickstoff in die Zellmasse einbauen (je wärmer die Färbung, desto mehr elementarer Stickstoff wurde eingebaut).
 

Ori­ginal pub­lic­a­tion

Phenotypic heterogeneity driven by nutrient limitation promotes
growth in fluctuating environments
Frank Schreiber, Sten Littmann, Gaute Lavik, Stéphane Es­crig, An­ders Meibom, Mar­cel Kuypers, Mar­tin Ack­er­mann. Nature Mi­cro­bi­o­logy. DOI : http://​doi.or­g10.1038/​NMI­CRO­BIOL.2016.55

For fur­ther in­quir­ies

Frank Schreiber / +49 30 8104-1414/ frank.Schreiber@bam.de
Mar­cel Kuypers / +49 421 2028 602 / mkuypers@mpi-bre­men.de
Mar­tin Ack­er­mann / +41 58 765 5122 / mar­tin.ack­er­mann@env.ethz.ch

or the press service

Dr. Man­fred Schlösser / +49 421 2028 704 / presse@mpi-bre­men.de
Dr. Fanni As­pets­ber­ger / +49 421 2028 947 / presse@mpi-bre­men.de
An­dri Bryner / +41 58 765 51 04 / an­dri.bryner@ewag.ch

Par­ti­cip­at­ing in­sti­tutes

Max Planck In­sti­tute for Mar­ine Mi­cro­bi­o­logy, Bre­men, Ger­many
École poly­tech­nique fédérale de Lausanne EPFL, Lausanne, Switzer­land
ETH Zurich, Switzer­land
Eawag, Dübendorf and Kastan­i­en­baum, Switzer­land
Back to Top