Seitenpfad:

Sym­bi­oses from hy­dro­ther­mal vents and cold seeps

Die Inhalte dieser Seite sind leider nicht auf Deutsch verfügbar.
 
 

Deep-sea hydro­ther­mal vents and cold seeps are co­lo­ni­zed by den­se com­mu­nities of ani­mals hos­ting che­mo­syn­the­tic sym­bio­tic bac­te­ria that pro­vi­de them with nut­ri­ti­on. The­se sym­bi­onts use ge­o­fu­els such as me­tha­ne, re­du­ced sul­fur com­pounds and hy­dro­gen, emit­ted from the sea floor at vents and seeps, as an en­er­gy sour­ce to fix in­or­ga­nic car­bon or me­tha­ne into bio­mass. The es­ta­blish­ment of sym­bio­ses with che­mo­syn­the­tic bac­te­ria as pri­ma­ry pro­du­cers is the evo­lu­tio­na­ry in­no­va­ti­on that al­lo­wed in­ver­te­bra­te ani­mals to thri­ve in the­se ex­tre­me ha­bi­tats whe­re the in­put of or­ga­nic mat­ter from pho­to­syn­the­sis is ex­tre­me­ly low.

Bathymodiolus mussels

Mussel icon by M. Franke based on photo by M. Ücker

Ifremeria snail

Snail icon by M. Franke based on photo by M. Ücker

Rimicaris shrimp

Rimicaris icon by M. Ücker based on photo from P. Briand, Ifremere (http://www.marinespecies.org/deepsea/photogallery.php?album=3715&pic=64127)
 
 
 
 

Sym­bio­ses in Ba­thy­mo­dio­lus mus­sels

Distribution of our Bathymodiolus samples worldwide

Bathymodiolus mus­sels are wi­de­s­pre­ad throughout the worl­d’s oce­ans. They oc­cur at hydro­ther­mal vents and cold seeps whe­re they are one of the most do­mi­nant ani­mals and grow to lar­ge ab­un­dan­ces and bio­mass. Their suc­cess in the­se ha­bi­tats is fa­ci­li­ta­ted by be­ne­fi­ci­al sym­bio­tic bac­te­ria that are hosted wi­t­hin spe­cia­li­zed gill cells cal­led bac­te­rio­cy­tes. The­se sym­bi­onts can turn che­mi­cal en­er­gy from hydro­ther­mal fluids into bio­mass to feed their mus­sel hosts. Through such che­mo­syn­the­tic pro­ces­ses, the mus­sels are in­de­pen­dent of sur­face-de­ri­ved food sour­ces. Bathymodiolus mus­sels live a in sym­bio­sis with sul­fur-oxi­di­zing sym­bi­onts, that can use re­du­ced sul­fur com­pounds or hy­dro­gen as en­er­gy sour­ce, and/​or me­tha­ne-oxi­di­zing sym­bi­onts that thri­ve on me­tha­ne.Our re­se­arch aims to un­der­stand the evo­lu­tio­na­ry his­to­ry, de­ve­lop­ment and host-sym­bi­ont in­ter­ac­tion of the­se sym­bio­ses.

 

Overview - symbiosis in Bathymodiolus mussels.

We com­bi­ne a va­rie­ty of tech­ni­ques (e.g. me­ta­ge­no­mics, tran­scrip­to­mics, me­ta­bo­lo­mics, li­pi­do­mics) that al­low us to in­ves­ti­ga­te Bathymodiolus sym­bio­ses from a glo­bal geo­gra­phic dis­tri­bu­ti­on down to a fine-sca­le re­so­lu­ti­on that can vi­sua­li­ze spa­ti­al pat­terns wi­t­hin sin­gle hosts (e.g. FISH, TEM, MAL­DI). Over the ye­ars, we dis­co­ve­r­ed more com­plex Bathymodiolus sym­bio­ses with a hig­her sym­bi­ont di­ver­si­ty. For ex­amp­le, we re­cent­ly found a high di­ver­si­ty at strain-le­vel in the sul­fur-oxi­di­zing sym­bi­onts. Apart from the well-stu­di­ed be­ne­fi­ci­al sym­bi­onts, Bathymodiolus mus­sels as­so­cia­te with a ran­ge of bac­te­ria who­se role in the sym­bio­sis is less cle­ar, such as Ca. En­do­nu­cle­ob­ac­ter, which in­fects the nu­clei of mus­sels cells. We also re­cent­ly iden­ti­fied spi­ro­chae­tes in mus­sels from the Ker­ma­dec Arc with com­ple­te­ly un­k­nown func­tions.The sym­bi­onts of Bathymodiolus mus­sels are thought to be ho­ri­zon­tal­ly trans­mit­ted, which me­ans they are ta­ken up from the en­vi­ron­ment with each new host ge­ne­ra­ti­on. This mode of ac­qui­si­ti­on opens up many new ques­ti­ons that we are in­ves­ti­ga­ting – such as How do host and symbionts recognize each other? How long is the time window for symbiont acquisition? Is there an active free-living stage of the symbionts? What makes them different from their free-living relatives?

 
 

Over­view of pro­jects & peop­le

Po­pu­la­ti­on ge­ne­tics of ba­thy­mo­dio­lin mus­sels of the Mid-At­lan­tic Ridge - Karina van der Heijden

Po­pu­la­ti­on ge­no­mics of mus­sels at the Mid-At­lan­tic Ridge & mus­sel sym­bio­ses world­wi­de - Christian Borowski

Po­pu­la­ti­on ge­no­mics of the Bathymodiolus sym­bio­sis, sym­bi­onts in Bathymodiolus hy­brids & free-li­ving sta­ge of sym­bi­onts - Merle Ücker

De­ve­lop­ment of Bathymodiolus mus­sels, sym­bi­ont co­lo­niza­t­i­on and  tro­phic re­la­ti­on bet­ween lar­vae and adults - Maximilian Franke

Bathymodiolus ul­tra­struc­tu­re - Niko Leisch

Spa­ti­al me­ta­bo­lo­mics and cor­re­la­ti­ve 3D his­to­lo­gy - Benedikt Geier

Li­pi­do­mics in Bathymodiolus mus­sels - Dolma Michellod

Phy­sio­lo­gi­cal re­s­pon­se of Bathymodiolus hosts and sym­bi­onts to stress as re­vea­led by tran­scrip­to­mics (and pro­teo­mics) - Målin Tietjen

Mi­cro­sco­py, phy­lo­ge­ny and mole­cu­lar bio­lo­gy of Endonucleobacter & SOX strain mo­sai­cism in Bathymodiolus azoricus - Miguel Ángel González-Porras

Strain di­ver­si­ty and evo­lu­ti­on in en­do­sym­bi­onts of Bathymodiolus mus­sels & ge­no­me struc­tu­re in the bac­te­ri­al SUP05 cla­de - Rebecca Ansorge

Me­ta­bo­lic in­ves­ti­ga­ti­on of cul­tiva­ble sym­bi­ont re­la­ti­ves - Patric Bourceau

 

Po­pu­la­ti­on ge­ne­tics of Ba­thy­mo­dio­lus at the Mid-At­lan­tic Ridge

Mussels at 5°S (Lilliput vent site). Image: GEOMAR (Kiel)

K. van der Heijden, C. Bo­row­ski

The aim of this stu­dy is to shed light on the evo­lu­tio­na­ry his­to­ry of Bathymodiolus mus­sels at the Mid-At­lan­tic Ridge. Previous phylogenetic analyses of the mussels show­ed that the clas­si­cal mar­ker gene for phy­lo­ge­ne­tic as­sess­ment, the mi­to­chon­dri­al mt­COI, does not pro­vi­de en­ough re­so­lu­ti­on to cla­ri­fy the re­la­ti­ons­hip wi­t­hin this group.
To in­ves­ti­ga­te the geo­gra­phic struc­tu­re, gene ge­nea­lo­gies, and the ma­jor di­rec­tions and re­la­ti­ve amounts of his­to­ri­cal gene flow bet­ween the four mus­sel po­pu­la­ti­ons at the Mid-At­lan­tic Ridge, we are using a mul­ti-lo­cus ap­proach for this po­pu­la­ti­on ge­ne­tic stu­dy. The re­sults of our ana­ly­ses are used to re­con­struct the evo­lu­tio­na­ry his­to­ry of the mus­sel po­pu­la­ti­ons which also pro­vi­des us with in­sight on the co­lo­niza­t­i­on his­to­ry of the Mid-At­lan­tic Ridge.

Sym­bi­onts in a mus­sel hy­brid zone

Hybrids at the MAR

M. Ücker

In the Bathymodiolus sym­bio­sis, litt­le is known about the in­flu­ence of the sym­bi­onts on the evo­lu­ti­on of the host de­s­pi­te many stu­dies that have been per­for­med on the sym­bi­onts‘ phy­sio­lo­gy. Our stu­dy aims to un­der­stand the po­pu­la­ti­on struc­tu­re and dy­na­mics of Bathymodiolus mus­sels and the role of sym­bio­ses in ani­mal hy­bri­di­sa­ti­on. We ana­ly­se mus­sel sam­ples from a vent field at the Mid-At­lan­tic Ridge whe­re two mus­sel spe­cies, B. azoricus and B. puteoserpentis, have been de­scri­bed to form via­ble hy­brids. We use dia­gnostic mar­kers and me­ta­ge­no­mic tech­ni­ques to as­sess the hy­brid sta­tus of each mus­sel in­di­vi­du­al and to in­ves­ti­ga­te the phy­lo­ge­ny of host mi­to­chon­dria and the sym­bi­onts. We hope to shed new light on the sym­bio­sis in hy­brid Bathymodiolus mus­sels and in­ves­ti­ga­te ques­ti­ons of sym­bi­ont spe­ci­fi­ci­ty and re­co­gni­ti­on. Un­der­stan­ding hy­bri­di­sa­ti­on in sym­bio­tic ani­mals al­lows us to stu­dy spe­cies for­ma­ti­on and evo­lu­ti­on in na­tu­ral com­mu­nities and the role of bac­te­ri­al sym­bi­onts in the­se pro­ces­ses.

De­vel­op­ment of Ba­thy­mo­dio­lus mus­sels & sym­bi­ont col­on­iz­a­tion

Baby bathys

M. Franke, N. Leisch

Adult Bathymodiolus mus­sels har­bour their pri­ma­ry sym­bi­onts in the gill tis­sue. In ju­ve­ni­le mus­sels howe­ver, the sym­bi­onts co­lo­ni­ze not only the gills but also all other epi­t­he­li­al tis­su­es wi­t­hin the mant­le ca­vi­ty. Only litt­le is known about how and when sym­bi­onts first co­lo­ni­ze the mus­sels. To un­der­stand the pro­ces­ses and pre­fe­ren­ces of sym­bi­ont co­lo­niza­t­i­on, we ex­ami­ne ear­ly de­ve­lop­men­tal sta­ges of Bathymodiolus mus­sels. Using a cor­re­la­ti­ve ima­ging ap­proach, which unites light- and elec­tron mi­cro­sco­py with syn­chro­tron ra­dia­ti­on-ba­sed X-ray mi­cro to­mo­gra­phy, we are able to ge­ne­ra­te a de­tai­led three-di­men­sio­nal mor­pho­lo­gi­cal da­ta­set. This da­ta­set can be com­bi­ned with sym­bi­ont lo­ca­liza­t­i­on using 16S rRNA FISH and al­lows us to de­ter­mi­ne the time of sym­bi­ont co­lo­niza­t­i­on re­vea­led by dis­tinct mor­pho­lo­gi­cal ad­ap­ta­ti­ons du­ring the de­ve­lop­ment of the host. Our work ser­ves as a star­ting point for fur­ther func­tio­nal ana­ly­ses to elu­ci­da­te how bac­te­ria can in­flu­ence and shape ear­ly eu­ka­ryo­tic de­ve­lop­ment.

Spa­tial meta­bolo­m­ics and cor­rel­at­ive 3D his­to­logy

Desy

B. Geier, M. Fran­ke, E. So­gin, D. Mi­chel­lod, M. Á. Gón­za­lez-Por­ras, A. Gruhl, N. Leisch, M. Liebeke

En­do­sym­bio­ses such as in Bathymodiolus mus­sels are cha­rac­te­ri­zed by in­ti­ma­te me­ta­bo­lic in­ter­ac­tions among the sym­bio­tic part­ners. Yet, we know very litt­le about the na­tu­re of the­se in­ter­ac­tions in sym­bio­ses, par­ti­cu­lar­ly in their en­vi­ron­men­tal con­text. The­re­fo­re, we crea­ted a spa­ti­al me­ta­bo­lo­mics pipe­line (metaFISH) that links sym­bi­ont ge­no­ty­pes with me­ta­bo­lic phe­no­ty­pes to al­low a spa­ti­al as­si­gn­ment of host and sym­bi­ont me­ta­bo­li­tes at the sca­le of in­di­vi­du­al host cells. We could ob­ser­ve how the spa­ti­al che­mis­try of host cells dif­fers with the pre­sence of in­tra­cel­lu­lar sym­bi­onts, found va­ria­ti­ons in me­ta­bo­lic phe­no­ty­pes in a sin­gle sym­bi­ont type and de­tec­ted no­vel me­ta­bo­li­tes. To gain a broa­der un­der­stan­ding of me­ta­bo­li­te dis­tri­bu­ti­on at the sca­le of who­le ani­mals, we also de­ve­l­o­ped a cor­re­la­ti­ve work­flow that al­lows ima­ging the 3D ana­to­my and mole­cu­lar com­po­si­ti­on of ani­mal-mi­cro­be sys­tems. The high spa­ti­al re­so­lu­ti­on gai­ned be the­se ima­ging ap­proa­ches al­lows us to tack­le some of the fun­da­men­tal ques­ti­on in sym­bio­sis re­se­arch such as how do the sym­bio­tic part­ners in­ter­act.

Phy­sio­lo­gi­cal re­pon­se of Ba­thy­mo­dio­lus sym­bio­sis to en­vi­ron­men­tal chan­ge

Idefix sampling device

M. Tietjen

To un­der­stand the cel­lu­lar in­ter­ac­tions bet­ween Bathymodiolus mus­sels and their in­tra­cel­lu­lar sym­bi­onts, we make use of ad­van­ced next-ge­ne­ra­ti­on se­quen­cing tech­ni­ques and in­ves­ti­ga­te gene ex­pres­si­on pat­terns of both part­ners. In par­ti­cu­lar, we are in­ves­ti­ga­ting which gene (groups) are re­s­pon­si­ble for the main­ten­an­ce of the sym­bio­sis in the light of chan­ging en­vi­ron­men­tal con­di­ti­ons. One ex­amp­le for such con­di­ti­ons is the li­mi­ted ac­cess to hydro­ther­mal fluids that car­ry es­sen­ti­al en­er­gy sour­ces for the sym­bi­onts such as sul­fur or me­tha­ne. Such va­ry­ing con­di­ti­ons are ex­pec­ted to oc­cur re­gu­lar­ly in hydro­ther­mal sys­tems. We si­mu­la­te such con­di­ti­ons with in situ and la­bo­ra­to­ry ex­pe­ri­ments, and com­pa­re the phy­sio­lo­gi­cal re­s­pon­ses of both host and sym­bi­onts on the tran­scrip­to­me and pro­teo­me le­vel.

Mi­cro­sco­py, phy­lo­geny and mo­lecu­lar bio­logy of En­do­nu­cle­ob­ac­ter

FISH image of Bathymodiolus mussel infected with Ca. Endonucleobacter (yellow).

M. Á. Gónzalez-Porras, N. Leisch

Ca. En­do­nu­cle­ob­ac­ter is a gam­ma­pro­te­ob­ac­te­ri­al pa­ra­si­te that in­fects the nu­clei of Bathymodiolus mus­sels. Af­ter a sin­gle Ca. En­do­nu­cle­ob­ac­ter cell in­va­des the host nu­cleus, it pro­li­fe­ra­tes mas­si­ve­ly (up to 80,000 bac­te­ria per nu­cleus) and the vo­lu­me of the nu­cleus in­crea­ses up to 50 fold. We in­ves­ti­ga­te how Ca. En­do­nu­cle­ob­ac­ter thri­ves in the nu­cleus, how it af­fects host cells and how it prevents the shut­down of the eu­ka­ryo­tic cell (e.g. apo­pto­sis). To do so, we have se­quen­ced the ge­no­me of the pa­ra­si­te and cou­p­led la­ser cap­tu­re mi­cro­dis­sec­tion of in­fec­ted nu­clei with ul­tra-low-in­put RNA-se­quen­cing. We are now in­ves­ti­ga­ting how the tran­scrip­tio­nal pro­files of pa­ra­si­te and host chan­ge along the in­fec­tious cy­cle. By tar­ge­ting the tran­scrip­to­mic pro­files of spe­ci­fic life sta­ges of an in­tra­nu­cle­ar pa­ra­si­te in situ, our pipe­line clo­ses the gap bet­ween the vi­su­al, mole­cu­lar and tem­po­ral cha­rac­te­riza­t­i­on of a pa­ra­si­te-host in­ter­ac­tion.

Strain di­ver­si­ty of Ba­thy­mo­dio­lus sym­bi­onts

Strain diversity in Bathymodiolus mussels

R. Ansorge, M. Á. Gón­za­lez-Por­ras

Bey­ond spe­cies boun­da­ries, small ge­no­mic chan­ges can stron­gly im­pact the life­style of a bac­te­ri­al strain. Howe­ver, cur­rent­ly it is not well un­ders­tood how strain-le­vel di­ver­si­ty in sym­bio­ses emer­ges, per­sists and if or how it im­pacts mu­tua­lis­tic as­so­cia­ti­ons. We de­ve­l­o­ped a me­ta­ge­no­mics ap­proach to tease apart strain-level differences in Bathymodiolus symbionts and dis­co­ve­r­ed striking func­tio­nal dif­fe­ren­ces among co-oc­cur­ring sym­bi­ont strains. This high re­so­lu­ti­on al­lows us to stu­dy sym­bi­ont po­pu­la­ti­on struc­tu­re that helps us un­der­stand sym­bi­ont co­lo­niza­t­i­on dy­na­mics. Using cul­ti­va­ti­on-in­de­pen­dent me­thods our re­se­arch pro­vi­des a snap­shot of the sym­bio­sis in its na­tu­ral con­text, al­lo­wing us to in­ves­ti­ga­te how such strain di­ver­si­ty evol­ved, per­sists and how it com­pa­res to free-li­ving re­la­ti­ves of the sym­bi­onts.

Me­ta­bo­lic in­ves­ti­ga­ti­on of cul­tiva­ble sym­bi­ont re­la­ti­ves

Cultivation experiments in the lab. Image: P. Bourceau

P. Bourceau

Over the last ye­ars, our omic ap­proa­ches have gi­ven us in­sights into the in­tri­ca­te re­la­ti­ons­hip and me­ta­bo­lic in­ter­ac­tion bet­ween the Bathymodiolus hosts and their sym­bi­onts. To ful­ly show that par­ti­cu­lar pro­ces­ses take place, we ap­p­ly ma­ni­pu­la­ti­ve ex­pe­ri­ments with sym­bi­ont re­la­ti­ves such as Methyloprofundus sedimenti, as cul­turing Bathymodiolus sym­bi­onts re­mains chal­len­ging. By using con­trol­led in­cu­ba­ti­on ex­pe­ri­ments and mass-spec­tro­me­try ba­sed ana­ly­ses of the me­ta­bo­lo­me, we can mea­su­re traits of the M. sedimenti ge­no­me that are sha­red with the me­tha­ne-oxi­di­sing sym­bi­ont of Bathymodiolus mus­sels. Not only can we iden­ti­fy pos­si­ble sub­stra­tes but also ex­cre­ted me­ta­bo­li­tes, which could po­ten­ti­al­ly be avail­able to the host. Our over­all aim is to cha­rac­te­ri­ze me­ta­bo­lic mar­kers lin­ked to en­vi­ron­men­tal con­di­ti­ons to con­clu­de the re­cent his­to­ry of a spe­ci­men from the deep-sea with me­ta­bo­lo­mics data.

On­go­ing col­la­bo­ra­ti­ons with for­mer mem­bers of the de­part­ment

Anne Kup­c­zok, Re­bec­ca An­sor­ge, Adri­en As­sié, An­t­o­ny Chak­ki­ath, Liz­beth Sa­ya­ve­dra, Ma­xim Ru­bin-Blum

Ex­ter­nal col­la­bo­ra­tors

Deep-sea re­se­arch in the field

 
 

Sym­bio­ses in deep-sea snail If­re­me­ria

One of the most ab­un­dant ani­mals at hydro­ther­mal vent sys­tems of the Wes­tern Pa­ci­fic is the snail Ifremeria nautilei. The­se hosts har­bor at least 4 bac­te­ri­al sym­bi­onts in their gills, sul­fi­de- and me­tha­ne-oxi­di­zing gam­ma­pro­te­ob­ac­te­ria and at least 2 al­pha­pro­te­ob­ac­te­ri­al phy­lo­ty­pes of un­k­nown func­tion. We are cur­rent­ly using com­pa­ra­ti­ve se­quence ana­ly­sis of phy­lo­ge­ne­tic and func­tio­nal ge­nes to gain a bet­ter un­der­stan­ding of the­se sym­bio­ses (Bo­row­ski et al. in prep.).

 
 

Sym­bio­sis in deep-sea shrimp Ri­mi­ca­ris

Rimicaris shrimp
Image: P. Briand, IFREMER
Rimicaris shrimp on a hydrothermal chimney
Image: IFREMER

Rimicaris shrimp form gi­ant swarms on hydro­ther­mal vent chim­neys in the At­lan­tic and In­dian oce­ans. They host a den­se com­mu­ni­ty of che­mo­syn­the­tic epi­bi­onts in their mo­di­fied gill cham­ber. The epi­bio­sis is do­mi­na­ted by fil­amen­tous gam­ma- and ep­si­lon­pro­te­ob­ac­te­ria. Alt­hough the epi­bi­onts are as­su­med to cont­ri­bu­te to the shrim­p's nut­ri­ti­on, di­rect evi­dence for this is still lacking. We showed that epibionts on R. exoculata from Mid-Atlantic Ridge vents have distinct biogeographic distribution patterns. We are cur­rent­ly in­ves­ti­ga­ting epi­bi­ont bio­geo­gra­phy on R. hybisae from two vents in the Mid-Ca­yman Sprea­ding Cen­ter, which are only 20 km apart but are se­pa­ra­ted by 2.5 km wa­ter depth. The shrimp epi­bi­onts have a free-li­ving sta­ge du­ring their life cy­cle, and the­se free-li­ving sym­bi­onts are ab­un­dant at the vent sites co­lo­ni­zed by Rimicaris. We will com­pa­re the bio­geo­gra­phy of the free-li­ving and host-as­so­cia­ted sym­bi­onts to an­s­wer the ques­ti­on: Is everything everywhere and the partners select?

Back to Top