Page path:

Superresolution Microscopy

Superresolution microscopy allows us to visualize microstructures below the diffraction limit. 

The techniques Su­per­res­olu­tion Struc­tured Il­lu­min­a­tion (SR-SIM) and Pho­to­activ­ated Loc­al­iz­a­tion Mi­cro­scopy (PALM) are combined with our con­focal laser scan­ning mi­cro­scope. more ...

Our latest superresolution instrument is based on the Stimulated Emission Depletion (STED)[1] technique.

The Abberior Instruments easy3D STED can provide a lateral resolution below 25 nm and a 3D resolution of up to 60 nm.

The instrument includes the methodes pulsed-STED[2], gated-STED[3],[4], and RESCue STED[5]. It is the first STED microscope with MINFIELD[6] technique on the commercial market.

3D STED
STED
© A. Ellrott / MPI MM

Technical features

Excitation laserSTED laserDetection*
 
405 nm (cw, 50 mW)
 
---
 

 450/50 nm

 
440 nm (pulsed, 500 µW)
 
  595 nm
(pulsed, 1 W)
 

 509/22 nm

 
485 nm (pulsed, 1 mW)
 

 525/50 nm or

  518 nm (pulsed, 300 µW)  

 545/24 nm

 
561 nm (pulsed, 300 µW)
 
  775 nm
(pulsed, 3 W)
 
 605/50 nm or
   615/20 nm
 
640 nm (pulsed, 1 mW)
 
 685/70 nm

 *single-photon-counting avalanche photodiode (apd module)

 

Reservation

Reservation STED

Location

Room 2242, Phone 931

Responsible

Andreas Ellrott

References

1. Hell, S.W., J. Wichmann. (1994). Breaking the diffraction resolution limit by stimulated emission: Stimulated-emission-depletion fluorescence microscopy. Optics Letters. 19: 780–82. (doi:10.1364/OL.19.000780).
 2. Dyba, M., S. W. Hell. (2003). Photostability of a Fluorescent Marker Under Pulsed Excited-State Depletion through Stimulated Emission. Applied Optics. 42:5123–29.  (doi:10.1364/AO.42.005123). 
 3. Vicidomini, G., G. Moneron, K.Y. Han, V. Westphal, H. Ta, M. Reuss, J. Engelhardt, C. Eggeling, and S.W. Hell. (2011). Sharper low-power STED nanoscopy by time gating. Nat. Meth. 8:571–3. (doi:10.1038/nmeth.1624). 
 4. Moffitt, J.R., C. Osseforth, and J. Michaelis. (2011). Time-gating improves the spatial resolution of STED microscopy. Opt. Express. 19:4242–54. (doi:10.1364/OE.19.004242). 
 5. Staudt, T., A. Engler, E. Rittweger, B. Harke, J. Engelhardt, S.W. Hell, (2011). Far-field optical nanoscopy with reduced number of state transition cycles. Opt. Express. 19:5644–57. (doi:10.1364/OE.19.005644). 
6. Göttfert, F., T. Pleiner, J. Heine, V. Westphal, D. Görlich, S.J. Sahl, S.W. Hell. (2017). Strong signal increase in STED fluorescence microscopy by imaging regions of subdiffraction extent. Proc. Natl. Acad. Sci. USA. 114:2125-30. (doi:10.1073/pnas.1621495114).

 

 

Back to Top